127 research outputs found

    Quantifying Differences in Habitat Use Between Anglers and Large Bluegills

    Get PDF
    We compared the habitat use of large (\u3e200 mm) bluegills (Lepomis macrochirus) to the locations of anglers targeting bluegills in a South Dakota glacial lake to determine whether habitat use was similar between anglers and bluegills. Eighty- five bluegills (mean total length = 213 mm) collected in September 2002 and May 2003 were affixed with external radio transmitters and subsequently relocated three to four times per week from October 2002 through October 2003. Bluegill angler locations were recorded during bluegill tracking sessions and roving creel surveys. Habitat variables (water depth, vegetation density and height, and substrate type) were measured lake-wide during August and October 2003. Water depth and vegetation in summer habitat did not differ between anglers and bluegills. Bluegill used areas that were shallower and more heavily vegetated than winter anglers. Anglers used softer substrates than bluegills during both seasons, especially summer. Based on these results, it is possible that summer anglers have the potential to impact bluegill populations more than winter anglers in lakes where sufficient vegetation exists to provide winter refuge from exploitation

    Unique molecular identifier-based high-resolution HLA typing and transcript quantitation using long-read sequencing

    Get PDF
    HLA typing provides essential results for stem cell and solid organ transplants, as well as providing diagnostic benefits for various rheumatology, gastroenterology, neurology, and infectious diseases. It is becoming increasingly clear that understanding the expression of patient HLA transcripts can provide additional benefits for many of these same patient groups. Our study cohort was evaluated using a long-read RNA sequencing methodology to provide rapid HLA genotyping results and normalized HLA transcript expression. Our assay used NGSEngine to determine the HLA genotyping result and normalized mRNA transcript expression using Athlon2. The assay demonstrated an excellent concordance rate of 99.7%. Similar to previous studies, for the class I loci, patients demonstrated significantly lower expression o

    Allele-specific quantification of human leukocyte antigen transcript isoforms by nanopore sequencing

    Get PDF
    IntroductionWhile tens of thousands of HLA alleles have been identified by DNA sequencing, the contribution of alternative splicing to HLA diversity is not well characterized. In this study, we sought to determine if long-read sequencing could be used to accurately quantify allele-specific HLA transcripts in primary human lymphocytes.MethodscDNA libraries were prepared from peripheral blood lymphocytes from 12 donors and sequenced by nanopore long-read sequencing. HLA reads were aligned to donor-specific reference sequences based on the known type of each donor. Allele-specific exon utilization was calculated as the proportion of reads aligning to each allele containing known exons, and transcript isoforms were quantified based on patterns of exon utilization within individual reads.ResultsSplice variants were rare among class I HLA genes (median exon retention rate 99%–100%), except for several HLA-C alleles with exon 5 spliced out of up to 15% of reads. Splice variants were also rare among class II HLA genes (median exon retention rate 98%–100%), except for HLA-DQB1. Consistent with previous work, exon 5 of HLA-DQB1 was spliced out in alleles with a mutated splice acceptor site at rs28688207. Surprisingly, a 28% loss of exon 5 was also observed in HLA-DQB1 alleles with an intact splice acceptor site at rs28688207.DiscussionWe describe a simple bioinformatic workflow to quantify allele-specific expression of HLA transcript isoforms. Further studies are warranted to characterize the repertoire of HLA transcripts expressed in different cell types and tissues across diverse populations

    Performance Characteristics and Validation of Next-Generation Sequencing for Human Leucocyte Antigen Typing

    Get PDF
    High-resolution human leukocyte antigen (HLA) matching reduces graft-versus-host disease and improves overall patient survival after hematopoietic stem cell transplant. Sanger sequencing has been the gold standard for HLA typing since 1996. However, given the increasing number of new HLA alleles identified and the complexity of the HLA genes, clinical HLA typing by Sanger sequencing requires several rounds of additional testing to provide allele-level resolution. Although next-generation sequencing (NGS) is routinely used in molecular genetics, few clinical HLA laboratories use the technology. The performance characteristics of NGS HLA typing using TruSight HLA were determined using Sanger sequencing as the reference method. In total, 211 samples were analyzed with an overall accuracy of 99.8% (2954/2961) and 46 samples were analyzed for precision with 100% (368/368) reproducibility. Most discordant alleles were because of technical error rather than assay performance. More important, the ambiguity rate was 3.5% (103/2961). Seventy-four percentage of the ambiguities were within the DRB1 and DRB4 loci. HLA typing by NGS saves approximately $6000 per run when compared to Sanger sequencing. Thus, TruSight HLA assay enables high-throughput HLA typing with an accuracy, precision, ambiguity rate, and cost savings that should facilitate adoption of NGS technology in clinical HLA laboratories

    Unique Molecular Identifier based High-resolution HLA Typing and Transcript Quantitation using Long-Read Sequencing

    Get PDF
    HLA typing provides essential results for stem cell and solid organ transplants, as well as providing diagnostic benefits for various rheumatology, gastroenterology, neurology, and infectious diseases. It is becoming increasingly clear that understanding the expression of patient HLA transcripts can provide additional benefits for many of these same patient groups. Our study cohort was evaluated using a long-read RNA sequencing methodology to provide rapid HLA genotyping results and normalized HLA transcript expression. Our assay used NGSEngine to determine the HLA genotyping result and normalized mRNA transcript expression using Athlon2. The assay demonstrated an excellent concordance rate of 99.7%. Similar to previous studies, for the class I loci, patients demonstrated significantly lower expression of HLA-C than HLA-A and -B (Mann–Whitney U, P value = 0.0065 & P value = 0.0154, respectively). In general, the expression of class II transcripts was lower than that of class I transcripts. This study demonstrates a rapid high-resolution HLA typing assay using RNA-Seq that can provide accurate HLA genotyping and HLA allele-specific transcript expression in 7 to 8 hours, a timeline short enough to perform the assay for deceased donors

    HLAProfiler utilizes k-mer profiles to improve HLA calling accuracy for rare and common alleles in RNA-seq data

    Get PDF
    BACKGROUND: The human leukocyte antigen (HLA) system is a genomic region involved in regulating the human immune system by encoding cell membrane major histocompatibility complex (MHC) proteins that are responsible for self-recognition. Understanding the variation in this region provides important insights into autoimmune disorders, disease susceptibility, oncological immunotherapy, regenerative medicine, transplant rejection, and toxicogenomics. Traditional approaches to HLA typing are low throughput, target only a few genes, are labor intensive and costly, or require specialized protocols. RNA sequencing promises a relatively inexpensive, high-throughput solution for HLA calling across all genes, with the bonus of complete transcriptome information and widespread availability of historical data. Existing tools have been limited in their ability to accurately and comprehensively call HLA genes from RNA-seq data. RESULTS: We created HLAProfiler ( https://github.com/ExpressionAnalysis/HLAProfiler ), a k-mer profile-based method for HLA calling in RNA-seq data which can identify rare and common HLA alleles with > 99% accuracy at two-field precision in both biological and simulated data. For 68% of novel alleles not present in the reference database, HLAProfiler can correctly identify the two-field precision or exact coding sequence, a significant advance over existing algorithms. CONCLUSIONS: HLAProfiler allows for accurate HLA calls in RNA-seq data, reliably expanding the utility of these data in HLA-related research and enabling advances across a broad range of disciplines. Additionally, by using the observed data to identify potential novel alleles and update partial alleles, HLAProfiler will facilitate further improvements to the existing database of reference HLA alleles. HLAProfiler is available at https://expressionanalysis.github.io/HLAProfiler/
    • …
    corecore