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Abstract

Background: The human leukocyte antigen (HLA) system is a genomic region involved in regulating the human
immune system by encoding cell membrane major histocompatibility complex (MHC) proteins that are responsible for
self-recognition. Understanding the variation in this region provides important insights into autoimmune disorders,
disease susceptibility, oncological immunotherapy, regenerative medicine, transplant rejection, and toxicogenomics.
Traditional approaches to HLA typing are low throughput, target only a few genes, are labor intensive and costly, or
require specialized protocols. RNA sequencing promises a relatively inexpensive, high-throughput solution for HLA calling
across all genes, with the bonus of complete transcriptome information and widespread availability of historical data.
Existing tools have been limited in their ability to accurately and comprehensively call HLA genes from RNA-seq data.

Results: We created HLAProfiler (https://github.com/ExpressionAnalysis/HLAProfiler), a k-mer profile-based method for
HLA calling in RNA-seq data which can identify rare and common HLA alleles with > 99% accuracy at two-field precision
in both biological and simulated data. For 68% of novel alleles not present in the reference database, HLAProfiler can
correctly identify the two-field precision or exact coding sequence, a significant advance over existing algorithms.

Conclusions: HLAProfiler allows for accurate HLA calls in RNA-seq data, reliably expanding the utility of these data in
HLA-related research and enabling advances across a broad range of disciplines. Additionally, by using the observed data
to identify potential novel alleles and update partial alleles, HLAProfiler will facilitate further improvements to the existing
database of reference HLA alleles. HLAProfiler is available at https://expressionanalysis.github.io/HLAProfiler/.
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Background
The human leukocyte antigen (HLA) complex is the set
of genes on chromosome 6 encoding proteins of the
major histocompatibility complex (MHC). These genes
are divided into multiple classes with similar but distinct
functions. Class I genes, such as HLA-A, HLA-B, and
HLA-C, are expressed in nearly all nucleated cells and
are important for recognizing endogenous foreign anti-
gens. These antigens can arise via infection or from
somatic variations, such as those introduced in cancer.
Class II genes, expressed on antigen-presenting cells,

generally recognize exogenous foreign antigens, such as
viral peptides entering the cytoplasm after apoptosis of
infected cells. Other genes in the HLA complex can have
more specialized functions (e.g., HLA-E for cell recogni-
tion by natural killer cells) or are associated with HLA
(e.g., TAP1/TAP2 for antigen peptide transport) [1, 2].
HLA genes are highly polymorphic, and the number

of known alleles continues to grow [3]. Accurately iden-
tifying which alleles are present in an individual is im-
portant in many areas, such as drug safety [4], disease
susceptibility [5, 6], neoantigen prediction for cancer
treatment [7], regenerative medicine [8], and organ
transplantation [9]. Traditional “gold standard” assays
for HLA typing, such as sequence-specific oligonucleo-
tide probe PCR (PCR-SSOP), sequence-specific primed
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PCR (PCR-SSP), and Sanger-based sequence-based typ-
ing (SBT), are labor intensive, costly, and relatively low
throughput [10, 11].
A new class of assays has emerged in recent years

which uses targeted next-generation sequencing (NGS)-
based methods as a new gold standard while increasing
throughput and decreasing both the reagent and labor
costs of HLA typing [12].
Most of these NGS assays for HLA typing use custom-

ized PCR, designed to specifically interrogate the HLA
region, such as TruSight HLA (Illumina), Holotype
(Omixon), and NGSgo (GenDx). Published data suggest
that these platforms are highly accurate for calling HLA
types [12, 13]. Due to their targeted nature, however,
these assays do not provide information outside the
HLA region, preventing the identification of other bio-
logically meaningful data such as somatic variation
found in other genes, thereby limiting their general
utility. Also, only a limited amount of HLA-specific
targeted-capture sequencing data is publicly available,
making HLA typing of historical data using these
methods difficult. To overcome the limitations inherent
to HLA targeted DNA approaches, methods have been
developed to identify HLA types in whole-genome se-
quencing (WGS) and whole-exome sequencing (WES)
data [14, 15], but these methods also have limitations.
Due to the high variability found in the HLA loci,

these regions must have sufficient coverage to accurately
ascertain HLA types. Both studies found that it is pos-
sible to call HLA types accurately from WGS; however,
both also found that this high accuracy requires nearly
half a billion sequencing reads [14]. Although sequen-
cing costs continue to drop, this depth of sequencing is
currently not a practical way to resolve the thousands of
possible HLA alleles for many investigators [14]. Con-
versely, while WES and other large targeted panels re-
quire far fewer sequencing reads to achieve a high depth
of coverage, the ability to correctly identify HLA types
using general targeted DNA-capture methods is highly
dependent on the sequences of the probes used to cap-
ture the DNA. Polymorphisms within HLA genes may
disrupt capture and cause portions of or entire exons to
be missing from the sequencing data. This can be espe-
cially true if rare alleles or as-yet-undiscovered alleles
were not considered during probe design. Finally, het-
erozygous alleles may have different capture efficiencies,
leading to non-equal sequencing coverage, potentially
complicating analysis. Indeed, HLA-typing accuracy for
exome sequencing has been shown to be poor [15, 16].
Based on these limitations, HLA typing in RNA

sequencing (RNA-seq) data promises several advantages:
i) it provides an unbiased dataset that fully covers both
fully expressed parental alleles equally; ii) no special re-
agents or protocols are needed; and iii) RNA-seq data

offer a myriad of uses beyond HLA typing. Existing tools
have been used to perform HLA typing using RNA-seq
data with limited success, suffering from poor accuracy
or the inability to call rare or novel alleles or offering
HLA calling for only a limited number of genes.
To overcome these limitations, we have developed

HLAProfiler to accurately determine HLA types using
RNA-seq data. HLAProfiler uses the k-mer content of
RNA-seq reads to identify the most likely HLA type for
the sample. Using both simulated RNA-seq data and
RNA-seq data from lymphoblastoid cell lines, we have
evaluated the performance of HLAProfiler. In data simu-
lating both common and rare alleles, HLAProfiler cor-
rectly identified > 99% of alleles. In the biological
dataset, HLAProfiler correctly identified HLA alleles
with > 98% concordance to gold standard Sanger se-
quencing calls. After using a third technology to resolve
the discrepancies with Sanger sequencing, HLAProfiler
accuracy increased to > 99% in the biological data. We
identified multiple cases where HLAProfiler correctly
identified alleles associated with disease risks that Sanger
missed, including ankylosing spondylitis (AS). Addition-
ally, HLAProfiler has the ability to correctly identify the
full protein sequences of both novel alleles and alleles
with an incomplete reference sequence. Finally, we dem-
onstrate that HLAProfiler can be extended to identify
the alleles of other immunologically important gene
classes, such as killer-cell immunoglobulin-like receptor
(KIR) genes. Overall, we demonstrate that HLAProfiler
excels at correctly identifying HLA alleles in the wealth
of RNA-seq data already generated and being generated
daily, opening the door for further advances in immuno-
logical and disease research.

Implementation
To assess the accuracy of HLAProfiler and five other
HLA-typing software tools, two sets of data were used.
The first was a set of 358 real samples that were HLA
typed using Sanger sequencing and whose RNA-seq data
were also publicly available. The second set comprised
data simulated to assess the accuracy of each tool for
common, rare, and novel alleles, as well as KIR genes.

RNA-seq data from lymphoblastoid cell lines from the
Geuvadis study
Publicly available RNA-seq data from the Geuvadis study
were used [17]. Briefly, 462 lymphoblastoid cell lines
(LCLs) were sequenced on the Illumina HiSeq2000 plat-
form using paired-end 75-bp reads, with 29.9 million
reads on average (range 8.6–83 million, with an interquar-
tile range of 24–34 million). HLA types for 358 of these
samples from diverse populations (Additional file 1: Table
S1) were determined using Sanger sequencing for HLA-A,
HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 [18, 19].
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Sanger sequencing uses select exons to assign an HLA
type, introducing ambiguity into the gold standard HLA
calls. To account for this ambiguity, we downloaded the
curated set of ambiguous HLA alleles from IMGT/IPD [3]
and converted all predicted and gold standard HLA calls
to the “G” group, when applicable, before calculating con-
cordance. To assess the accuracy of HLA calling programs
under reduced read numbers, this dataset was also down-
sampled to five million paired reads.

Simulated RNA-seq data
Five different types of simulated datasets were created.
In all cases, a transcript FASTA file was generated from
the human transcriptome extracted from GENCODE
v24 [20, 21], with the HLA genes replaced with specific
HLA alleles unique to each subject. HLA allele se-
quences were obtained from the IMGT/HLA database
(v24) [22]. Each sequence was over-represented by re-
peating it 100 times in the FASTA file so that the total
number of HLA reads roughly matched those observed
in the Geuvadis study. This modified transcript file was
then used to generate simulated FASTQ files using the
program wgsim. Specifically, 20 million paired-end
50-bp reads were generated for each individual, using
an error rate of 0.001 (base qualities of Q30), a mean
insert size of 250, and an insert standard deviation of
75. Wgsim did not allow for the simulation of genes
with sequence lengths less than 400 with the current
parameter set. Although this restriction did not affect
HLA or KIR alleles, it did affect many other real hu-
man transcripts, potentially making the simulated data
less diverse than a truly biological sample. For this
reason, wgsim was altered slightly to allow for simula-
tion of genes with sequence lengths down to 200 bp
using the current parameter set. All simulated data-
sets are available at http://www.q2labsolutions.com/
genomics-laboratories/bioinformatics (select “Request
Example Data”).
The first dataset simulated RNA-seq data from 109

subjects with HLA types made to be consistent with the
two-field HLA types for samples from the GeT-RM pro-
gram hosted by the Centers for Disease Control [23, 24].
For the alleles where two-field precision matches several
actual HLA alleles (e.g., A*01:01, matches A*01:01:01:01,
A*01:01:01:02, etc.), the first allele with a “complete” sta-
tus (i.e., lowest accession number and the entire tran-
script sequence is known) from IMGT was chosen.
Most of the simulated HLA alleles for this dataset were
previously categorized as “common” or “well docu-
mented” [25, 26].
The second dataset simulated rare alleles. This set

was generated using alleles with complete status
(entire sequence known) from IMGT that were not
previously listed as “common” or “well documented”

(Additional file 1: Table S2). For this set, HLA types for
100 individuals (200 alleles) were simulated by randomly
drawing from these rare alleles with replacement.
Historically, only exons 2 and 3 of class I genes or

exon 2 of class II genes have been submitted to the
IMGT/HLA database, because these exons contain the
variability influencing peptide binding [3]. As a result,
over 87% of the alleles listed in the IMGT/HLA database
have partial status, where the entire sequence has not
been submitted. Typing for these alleles is challenging
since many reads will match much better to similar al-
leles whose complete sequence is in the database than to
the incomplete, correct sequence. To simulate this
unique situation, the third simulated dataset was identical
to the second dataset except that each sample had one al-
lele swapped with an allele that had a partial, or incom-
plete, sequence in IMGT/HLA release 3.24.0 but later had
a complete sequence in release 3.26.0 (Additional file 1:
Table S2). In these cases, the full allele sequences from the
later release were used to simulate the data, but informa-
tion from only the earlier, incomplete release was included
in the profile database used for calling HLA types.
The fourth simulation dataset includes novel alleles

(i.e., not in the IMGT/HLA database) and was created
similarly to the third simulation dataset. Alleles included
in release 3.26.0 with a complete sequence but absent in
3.24.0 were considered novel alleles. The novel allele
dataset was generated by taking the “rare allele” dataset
and replacing exactly one allele for each individual with
a novel allele (Additional file 1: Table S2).
The fifth simulated dataset was for alleles from the

KIR genes [27]. For this simulation, full alleles from the
IMGT/KIR database were used to generate two alleles
randomly for each of the 17 different KIR genes across
ten samples. The simulation parameters were the same
as for the other datasets.

HLAProfiler algorithm overview
The constantly increasing number of reference HLA al-
leles makes HLA calling in RNA-seq data a daunting task
that can more easily be accomplished by reducing the
problem’s search space. Rather than using a series of trad-
itional alignment and/or contig assembly steps for this re-
duction, HLAProfiler relies on a series of k-mer-based
steps. A difficult and time-consuming first step of HLA
calling in RNA-seq data is identifying the small fraction of
reads originating from the HLA region and the specific
gene from which they originate. While this filtering is
often accomplished with sequence alignment, HLAProfiler
takes advantage of a taxonomic sequence classification
tool, Kraken [28], to quickly identify FASTQ reads
uniquely arising from a particular HLA gene. Using
the k-mer composition of each read pair, and a taxonomic
reference that has been pre-built from the IPD-IGMT/
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HLA database of sequences, this step can be accomplished
very quickly and accurately. Having reduced the observed
data to reads containing information specific to HLA
genes, the next problem is reducing the vast number of
alleles for each gene to the most likely candidates. By
breaking apart paired reads and examining their k-mer
content separately, each set of gene-specific reads can be
quickly reduced to an “observed k-mer” profile for the
sample. In a quick and simple filtering step, HLAProfiler
compares the k-mers in the observed k-mer profile to a ref-
erence set of allele profiles, reducing the number of candi-
date alleles from up to many thousands to just a few
hundred (default 100). A subsequent, more complex step
comparing the observed profile to all possible candidate
pairs identifies the most likely candidate pairs (default 20).
The final HLA call is decided using a combined score from
the k-mer profile comparison and a simple alignment of
the paired-end reads to the final candidate alleles.
These k-mer-based methods greatly reduce the time
required for this paired-end alignment step, and allows for
k-mer profile comparison. Together these two steps pro-
vide complementary evidence of the correct HLA call.
Below, we describe in more detail the algorithms to a) make
the reference and b) call HLA alleles for a sample (Fig. 1).

Creating a reference for HLAProfiler
The reference HLA k-mer profiles were constructed in
four steps: reference profile creation step (RC)1) simu-
late FASTQ reads using a reference FASTA file of HLA
sequences; RC2) create a Kraken database using a cus-
tom HLA taxonomy; RC3) use Kraken to assign the sim-
ulated reads to HLA genes in the taxonomy; and RC4)
aggregate the k-mer counts for each allele into gene-
level, reference k-mer profiles. Once created, the refer-
ence profiles can be reused to identify types in various
new RNA-seq samples. HLAProfiler has a build option
to build a reference database. Because reads are simu-
lated for every allele in the database (>14K alleles), data-
base creation can take as long as 24 h using 48 cores.
The database used in this study was created using the
complete IPD-IMGT/HLA version 3.24.0 reference.
Database creation steps are detailed below.

RC1: simulate FASTQ using a reference FASTA of HLA
sequences
The gene-level reference profiles are created using an
HLA reference nucleotide FASTA file following the
standard IPD-IMGT/HLA nomenclature. While the
work described here uses the nucleotide FASTA from
IPD-IMGT/HLA release 3.24.0, reference profile cre-
ation will also work with custom reference sequences as
long as the same naming conventions are followed.
A simulated FASTQ file is made from each unique al-

lele sequence in the reference FASTA. Identical allele

sequences are merged together, and the merge is re-
ported any time that sequence is included among the
predicted HLA types. The paired-end read fragment
lengths are simulated assuming a Pareto distribution,
with a user-defined scale, shape, and maximum insert
size. Additionally, the user specifies read length and
number of reads. Reads simulated for this work used the
following default parameters: scale 80, shape 0.7, max_
insert 1000, num_reads 500,000, read_length 50. For all
simulations, read 1 is reverse complemented, compar-
able to a stranded sequencing protocol.

RC2: create a Kraken database using a custom HLA
taxonomy
A custom HLA taxonomy is created from the same
reference FASTA used for the simulation of allele reads
(Additional file 1: Figure S1). The taxonomic organization is
based on the standard HLA nomenclature. The tree has
two main branches: HLA alleles and the distractome. The
distractome comprises all gene transcripts except transcripts
falling within the HLA region and is important for account-
ing for homology with non-HLA genes. The HLA common
ancestor has three branches: class I genes, class II genes,
and other HLA genes. Leaves of the tree on these branches
represent each individual allele (i.e., A*02:02:01:01), with all
other nodes, or common ancestors, on each branch repre-
senting the various fields of precision for that leaf (i.e., A,
A*02, A*02:02, A*02:02:01). The distractome was created
using transcripts from GENCODE version 24. This
custom taxonomy was built into a Kraken database using
the default HLAProfiler parameters for minimizer length
(-mi 3) and k-mer length (-k 31) using 24 threads (-c 24).
The taxonomy uses the NCBI database format with node
names and node relationships found in names.dmp and
nodes.dmp, respectively, located in the taxonomy subdir-
ectory of the built database.

RC3: use Kraken to assign the simulated reads to HLA genes
Kraken is typically used to understand species diversity
in sequencing data, assuming a given taxonomy. This
methodology was applied to HLAProfiler using only the
HLA taxonomy rather than the standard NCBI species
taxonomy. Leveraging the k-mers unique to each taxo-
nomic unit, Kraken outputs a taxonomic classification
for each sequence read. For HLA typing, we have modi-
fied Kraken to split the reads into individual FASTQ files
based on these classifications [29]. For HLAProfiler,
reads are placed into FASTQ files corresponding to the
gene level, or higher, node in the tree.

RC4: aggregate the k-mer counts for each allele into
gene-level profiles
All observed k-mers of length 50 are counted independ-
ently for each HLA gene-specific FASTQ file and
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collected across all alleles for a particular gene to create a
list of k-mer hash table counts. This same procedure is
used for calling HLA types, where the profile of the
k-mers observed in the sample FASTQ is calculated and
can be compared to the k-mer profile for each allele of the
gene. The k-mer classification approach of Kraken, com-
bined with the custom taxonomy helps to overcome hom-
ology between HLA genes. While k-mers unique to each
gene enable Kraken to correctly classify the read, Kraken
also considers the lowest common ancestors when making
a classification. A read with many k-mers shared across
genes and just a few unique k-mers can still be filtered to
the proper gene. Kraken also processes paired-end reads
together, further increasing the likelihood of gene-specific
k-mers and successful classification.

Calling HLA alleles using HLAProfiler and an
HLAProfiler-specific reference
Using the HLA k-mer profiles to type samples involves
five steps: HC1) use Kraken to assign sample FASTQ
reads to HLA genes; HC2) aggregate the k-mer counts
for each allele into gene-level sample profiles; HC3)
compare sample k-mer count profiles to the reference
profiles to determine top allele pair candidates; HC4)
competitively align each pair of candidate alleles and
count the number of reads aligning uniquely to only one
of the pairs; and HC5) refine the allele call to identify
novel or updated alleles. The final score of the predicted
HLA type is based on the strength of the sample k-mer
profile match to the reference profile and the competi-
tive pairwise alignment counts.

Fig. 1 Overview of the HLAProfiler workflow. The HLAProfiler workflows to create the reference k-mer profile database (green) and HLA calling in
RNA-seq data (blue). Each step label in the workflow corresponds to the text (see “Implementation”). The workflows share the k-mer filtering and
profile creation step (blue/green box)
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HC1: use Kraken to assign sample FASTQ reads to HLA
genes
See “RC3: use Kraken to assign the simulated reads to
HLA genes”.

HC2: aggregate the k-mer counts for each allele into
gene-level sample profiles
See “RC4: Aggregate the k-mer counts for each allele
into gene-level reference profiles”.

HC3: compare sample k-mer count profiles to reference
profiles to determine top allele pair candidates
If a particular k-mer from the profile of a candidate HLA
allele is found in the observed reads, the k-mer is consid-
ered accounted for. To reduce the negative influences of
sequencing errors, infrequently (relative to overall se-
quence depth) observed k-mers are not considered as part
of the observed profile. The counts of all k-mers in the
profile that are accounted for are divided by the total
count of k-mers in the profile to calculate the fraction of
the profile observed. The top n semifinalists (default
n = 100) with the highest proportion are carried into
downstream analyses. In cases where allele n + 1 and n
are tied, the number of semifinalists (n) is increased until
the score for n + 1 is less than n. For each of the resulting
n × n pairwise combinations, the proportion of observed
FASTQ k-mers accounted for by the combined profile
(PropReads) and the proportion of the reference pro-
file k-mers accounted for by the observed read k-mers
(PropProf ) are calculated. K-mers from observed reads
with one or fewer counts are not considered in either cal-
culation. In addition, the Pearson correlation (Cor) be-
tween the log of the profile and the log of the read k-mers
is calculated. Error is calculated as:

Error ¼ 1� PropProfð Þ þ 1� PropReadsð Þ
þ 1� Corð Þ

and the top m finalist (default m = 20) allele pair candi-
dates are retained for competitive alignment. A reference
k-mer profile contains both the k-mers expected from an
allele and the expected proportion of each k-mer in the
profile. While the correlation (Cor) is influenced by both
k-mer composition and k-mer counts of the observed pro-
file, the metrics PropReads and PropProf are solely influ-
enced by the k-mer composition. HLAProfiler does not
test for or estimate allelic expression of HLA alleles, but
the inclusion of PropReads and PropProf helps to mitigate
negative impacts of expression bias on HLA calling.

HC4: competitive alignment between the top 20 candidate
allele pairs
An m × m alignment score matrix (ASM) is initialized
to zero. Each of the original FASTQ read pairs is then

checked for an exact match to each of the top 20 candi-
date allele pairs. If both reads in the pair match one of
the alleles from candidate pair i, but zero alleles from
candidate pair j, the (i, j)th entry of the ASM is incre-
mented by a quality-determined score S:

S ¼
0 if Q≤Qmin

Q� Qmin

35� Qmin
if Qmin < Q < 35

1 if Q≥35

8
>>><

>>>:

where Q is the lowest quality score of one of the bases
in either read 1 or read 2 and Qmin is the minimum
quality threshold (default 20). This process is repeated
for all reads across all possible pairwise combinations of
candidate allele pairs. The resulting row sums represent
the quality-weighted count read unique to the allele pair
in the row, while the column sums represent the
weighted counts of reads unique to other alleles when
compared to the column allele pair. Compared to other
allele pairs, the correct pair is expected to have more
unique reads resulting in a higher row sum and lower
column sum. In some cases, particularly with a low
number of unique reads, sequencing error can artificially
increase the column sum. Each entry of the ASM is
incremented by the total number of matching reads di-
vided by 10,000 to help protect against these situations
where the noise (e.g., unique matches due to sequencing
error) outweighs the signal (i.e., unique matches due to
real differences in alleles). This adjustment favors allele
pairs with a higher row sum. For example, if the correct
allele pair in a matrix of four pairs has a ratio of 7/4
(row to column) and the incorrect allele has a ratio
of 4/2, after a total adjustment to the sums of 3.75 (1.25
per cell), the correct allele will now have a higher ratio
(10.75/7.75 compared to 7.75/5.75). An HLA score for
each read pair is calculated using:

Score ið Þ ¼ sum ASM i;½ �ð Þ
sum ASM ; i½ �ð Þ

� �P

� 1
Error ið Þ

where P, ranging from 0 to 1, is the power assigned to
this competitive alignment score (default P = 0.25). The
top-scoring allele pair is then selected as the predicted
allele pair.

HC5: allele refinement
This step is optional. Paired reads are mapped using a
custom aligner a final time to the predicted allele pair,
this time allowing for one mismatch. During this
process, the read support for each possible nucleotide is
recorded. Positions that have more support for a mis-
matching nucleotide than for the reference nucleotide
(default > 75% of coverage mismatch) are substituted
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into a putative novel allele sequence. All reference alleles
for the same gene from IMGT are then checked to de-
termine whether they are an exact substring of the novel
allele and are also listed as having only a “partial” se-
quence with one or more missing exons. If any allele sat-
isfies these requirements, the predicted allele is changed
to the partial reference allele, with a “U” (for updated)
added to the accession ID. If no alleles satisfy these re-
quirements, the accession ID of the top-scoring candi-
date is appended with an “N” (for novel). In either case,
the modified sequence is output to file by the program,
and a new simulation profile is created for the novel
allele. If the allele refinement option is specified as
“recalculate” or “all”, then all metrics are calculated for
the novel allele to obtain an updated prediction score.

Considerations of k-mer size
HLAProfiler utilizes k-mers in two different ways: 1) se-
quence read filtering; and 2) profile creation. The longer
the k-mer, the more likely it is to be unique to a specific
HLA gene or allele. Using shorter k-mer sizes will de-
crease the number of unique k-mers across the HLA
genes, which in turn will decrease the memory footprint
of the Kraken database, but also reduce the sensitivity of
filtering. We recommend using the maximum k-mer size
allowed by Kraken of 31 bp.
The fewer the number of HLA alleles that contain a

given k-mer, the greater the contribution of that k-mer
for identifying the correct HLA alleles. As a profile
captures the combination and quantity of k-mers of each
allele, even k-mers shared across many alleles can con-
tribute valuable information. The k-mer size is mainly
limited by sequence read length, as HLAProfiler will not
work properly if k is greater than the sequence length.
While there is no lower bound on k, small values for k
will negatively impact algorithm performance. Addition-
ally, using a k that is much smaller than the sequence
length can increase runtime of HLAProfiler. A final con-
sideration is that each value for k requires the creation
of a new set of reference k-mer profiles, a computation-
ally intense process. Given these considerations, we have
characterized HLAProfiler performance using a k-mer
size of 50, which maximizes k-mer content of the pro-
files while accommodating many of the current and his-
toric RNA-seq read lengths.

TruSight HLA confirmation to update gold standard truth
A total of 324 Geuvadis samples were concordant be-
tween Sanger sequencing, RNA-seq with HLAProfiler,
and RNA-seq with OptiType (when available) for all five
reported genes (HLA-A, HLA-B, HLA-C, DRB1, and
DQB1). For these, we assumed that this reflected the
true state of the sample. For the 34 samples that had at
least one allele from any gene that was discordant

between Sanger sequencing and either OptiType or
HLAProfiler, discrepancies were resolved by further se-
quencing using Illumina’s TruSight HLA assay. Two
samples with only one-field accuracy reported by Sanger
sequencing were also tested, In all cases, the TruSight
HLA result matched either one of the RNA-seq results
or the Sanger result.
Whenever TruSight HLA represented a consensus

(matching either Sanger or RNA-seq), we assumed that
the consensus type represents the true state. This infor-
mation was used in the establishment of an updated
truth for the Geuvadis data, from which accuracy, not
just concordance to another technology, can be
estimated. The results of TruSight HLA are available
at http://www.q2labsolutions.com/genomics-laboratories/
bioinformatics (select “Request Example Data”).

HLAProfiler software
HLAProfiler is written entirely in Perl, with the excep-
tion of Jellyfish [30], a Kraken dependency, and the
modified version of Kraken. All analyses were performed
on a Linux cluster with eight CPU cores and 8 GB of
memory. Computational performance was assessed from
a random sample of 30 Geuvadis FASTQ pairs using 8
GB of RAM and 12 cores of a Dell PowerEdge R720 ser-
ver with 256 GB of total RAM and two 12-core CPUs.
Total runtimes ranged from 7 to 17 min, with a mean of
12.5 min, making HLAProfiler’s speed comparable to the
other available tools (Additional file 1: Figure S2). These
analyses used HLAProfiler v1.0.0. The latest version of
HLAProfiler can be downloaded from GitHub (see
“Availability of data and materials”) or as part of the
bioconda repository (https://bioconda.github.io/recipes/
hlaprofiler/README.html).

Running other callers
All callers were run on a Linux cluster using eight CPU
cores. OptiType [31] was installed as directed and run
using razers3-3.5.3 and glpk and default parameters. We
ran seq2HLA v2.2 [32] against a reference using only the
“common” and “well-documented” alleles and default
parameters. HLAForest [33] was installed as directed,
and a new reference was created using IMGT/HLA
v3.24.0 sequences. CallHaplotypesPE.sh was run using
default parameters to type each sample. HLAMiner [16]
was installed as directed and run using default parame-
ters and a reference database. Phlat-1.0 [34] used IMGT/
HLA version 3.8.0 and Bowtie2 version 2.3.0. The
paired-end parameter “-pe” was set to 1, under which
the data are treated as paired-end. Orientation param-
eter “-orientation” was set to “—fr”, under which the
orientation of the mate pair reads are in forward and re-
verse. Where documentation existed, every attempt was
made to update the reference for these tools to be
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comparable to IMGTv3.24.0. HLAForest and HLAMiner
were successfully updated, but HLAMiner performance
decreased with the updated reference, so the reference
packaged with the software was used.

Results
HLA types were predicted in five simulated RNA-seq
datasets and from biological RNA-seq data from lym-
phoblastoid cells using HLAProfiler. For comparison,
types were also predicted using five other tools capable
of detecting HLA types in RNA-seq data: OptiType,
PHLAT, seq2hla, HLAMiner, and HLAForest. The ac-
curacy of calls from simulated data was calculated as the
proportion of alleles that matched exactly to the truth at
the specified precision. Likewise, accuracy for the bio-
logical data was calculated by comparing the allele calls
to the Sanger sequencing/TruSight HLA consensus de-
scribed in “Implementation”. One-field precision refers
to the allele group (results not shown), two-field preci-
sion refers to the protein sequence, and exact precision
refers to an exact match of the allele at the highest pre-
cision possible (some alleles have only two-field preci-
sion defined). Allele calls unable to be predicted by a
tool in samples with truth information available for the
gene were considered incorrect or discordant.

HLAProfiler perfectly called HLA types in RNA-seq data
simulated from GeT-RM HLA types
We first calculated accuracy results for allele calls from
RNA-seq data simulated using HLA types from 109
samples in the CDC’s GetRM program. Using HLA
types from real individuals ensured that our initial
simulation evaluated biologically relevant allele pairs.
HLAProfiler had 100% accuracy at both two-field
and exact-allele precision (Fig. 2a; Additional file 2:
Table S3). OptiType also performed near perfectly,
with two-field precision accuracy ≥ 99.5% for HLA-A,
HLA-B, and HLA-C. At the time of analysis, OptiType
did not call class II alleles nor did it provide exact-allele
accuracy. Other callers had a wide range of accuracies but
did not perform as well as HLAProfiler or OptiType at
two-field precision. Only HLAForest also provided
exact-allele precision but performed much worse
than HLAProfiler, with accuracies less than 56%
(Additional file 2: Table S3).

HLAProfiler accurately predicted the HLA types of rare
alleles
We observed that the only allele missed by OptiType in
the GeT-RM simulation was a rare allele. This motivated
an effort to quantify the ability of each caller to correctly
identify rare alleles. We calculated the call rate and
accuracy of HLA typing in 100 simulated RNA-seq
datasets comprising only rare alleles. HLAProfiler

had > 99.5% two-field precision accuracy and > 94.0%
exact-allele accuracy for every gene, while other callers
performed poorly (Fig. 2a; Additional file 2: Table S3). In-
deed, with the exception of HLAForest, all callers had
two-field accuracies less than 78%, and for HLAForest, ac-
curacies ranged from 35–95%. Whether this drop in per-
formance for rare alleles is caused by the algorithm or the
use of outdated references distributed with the other tools
remains unclear.

HLAProfiler demonstrated high concordance with
orthogonal methods in lymphoblastoid cell lines
Having evaluated performance in two simulated datasets,
we next predicted HLA types in RNA-seq data generated
by the Geuvadis consortium. These RNA-seq data, gen-
erated from 358 different LCLs, have gold standard HLA
types available from orthogonal methods for genes A, B,
C, DRB1, and DQB1 [18]. Once again, OptiType and
HLAProfiler performed similarly on class I genes,
with 99.0 and 98.9% average concordance, respect-
ively, and > 98% concordance across all individual
genes. This result is a marked improvement over
other callers, which had < 96% average concordance
for class I alleles (Fig. 2b; Additional file 2: Table S4;
Additional file 2: Table S5). HLAProfiler also had an
average concordance of 99.1% for class II genes, with
99.2% for DRB1 and 98.9% for DQB1. To evaluate
HLA typing performance in samples with a low num-
ber of reads, we downsampled all 358 RNA-seq data-
sets to five million reads and predicted HLA types
(Fig. 2b; Additional file 2: Table S4). Reduced read
depths had little influence on HLAProfiler predictions
for HLA-A, DRB1, and DQB1 (0.1–0.3% lower), while
genes B and C were more affected, with 1.8 and 1%
lower concordances, respectively. For comparison, read
depth had less influence on OptiType performance,
with a 0.1% increase for HLA-A and a 0.6% decrease
for HLA-B and no change for HLA-C. The number of
filtered, HLA gene-specific reads depends on HLA gene
expression and can vary between samples and tissue
types. To understand the influence of filtered read
depth on accuracy, we selected at random 50 samples
from the Geuvadis dataset for which all alleles were
correctly predicted. After downsampling these filtered
reads, we found that HLAProfiler can identify HLA
type for all genes with greater than 90% accuracy with
as few as 1000 reads (Additional file 2: Table S3). For
comparison the number of filtered reads range from
3–100K for the full dataset from these Geuvadis samples
(total read depths vary). Accuracy varies across genes for a
specific read depth and factors such as the sample’s tissue
type and the HLA genes of interest should be considered
carefully when setting minimum read depth thresholds for
HLA calling.
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Multiple factors can influence HLA calling, which
makes accurate HLA identification for every gene across
every sample extremely difficult when using RNA-seq
data. Because accurate HLA determination relies on se-
quencing of the RNA associated with each HLA gene,
accuracy is heavily influenced by transcription. The tran-
script levels of each HLA gene can vary greatly between
tissues—for example, class II expression is much higher

in the blood than in the liver—making HLA calling more
difficult to predict for certain gene and tissue combina-
tions. Transcript levels can also vary for the same gene
and tissue across individuals, influencing the success of
HLA calling. The combination of alleles expressed in an
individual can also influence HLA calling success. For
example, in some samples there may be allelic expres-
sion imbalance, a situation in which one particular allele

A

B

Fig. 2 HLA calling accuracy. a The accuracy of HLA calling was evaluated for six algorithms. Datasets were simulated using GeT-RM alleles from
109 samples (left panels) and rare alleles for 100 samples (right panels) at two-field precision (upper panels) and exact precision (lower panels) when
available. b Concordance of HLA calling in 358 lymphoblastoid cell lines compared with gold standard HLA allele calls generated by Sanger
sequencing (left panel). Sequences were downsampled to five million reads, HLA alleles were called, and concordance was recalculated (middle
panel). Discrepancies between HLAProfiler, OptiType, and Sanger sequencing were resolved using TruSight HLA for 38 samples, the gold standard
calls were updated with the resolved genotype, and concordance was recalculated for all methods with the addition of the original Sanger
sequencing calls (right panel)
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may be expressed at a significantly higher level than the
partner allele. Additionally, some alleles may be rare and
not included in the database or two combinations of dif-
ferent alleles have very similar nucleotide content. In
these cases, the HLA call rates may suffer for a specific
subset of HLA alleles. Finally, some algorithms are only
limited to calling HLA types for a subset of genes and
alleles, often through database design, and these algo-
rithms will be limited in their ability to call HLA alleles.
Of the tools evaluated, only HLAProfiler and HLAForest
were able to provide > 99% call rates for all of the major
HLA genes (HLA-A, HLA-B, HLA-C, HLA-DP, HLA-
DM, HLA-DO, HLA-DQ, and HLA-DR) (Additional file 2:
Table S5). Of the two tools, HLAProfiler had slightly
higher call rates for some important genes, such as MICA,
MICB, TAP1, and TAP2 (99–100 vs. 42–96%), while HLA-
Forest had better rates for HLA-H (25 vs. 100%) and many
pseudo genes (e.g., J, K, L).

TruSight HLA typing resolved discrepancies and increased
HLAProfiler accuracy
Resolving HLA types using Sanger sequencing, while
very accurate, is not perfect. For this reason, the true
state of the sample is unclear whenever RNA sequencing
results and Sanger results disagree. In this scenario, a
third highly accurate technology can be used as the arbi-
trator. This approach will yield an improved understand-
ing of the true state of the sample, provided that this
technology has biases and errors that are reasonably in-
dependent of the first two. We attempted this arbitration
using Illumina’s TruSight HLA panel. We believe that
this method yields results that are sufficiently different
from RNA sequencing because 1) it uses DNA as the
genomic material; 2) it utilizes a targeted, rather than
whole-transcriptome, approach; and 3) the software uses
a different algorithm than any of the other tools. Includ-
ing all samples discordant between any caller and the
gold standard was cost prohibitive; therefore, we chose
to investigate only discordances from the top two per-
forming algorithms.
We collected all samples that had any discordance be-

tween either HLAProfiler or OptiType and Sanger se-
quencing, which amounted to 35 samples and 39
discordant calls. We sequenced 34 of these samples with
Illumina’s TruSight HLA panel (Additional file 2:
Table S6), in addition to two samples with only one-field
HLA precision, previously available for one of the genes.
After replacing the Sanger calls with the TruSight HLA
calls for these 40 (38 discordant, two one-field precision
only) allele calls in the truth data, performance metrics
were recalculated (Fig. 2b; Additional file 2: Table S4).
Using this updated truth, HLAProfiler had 99.9, 99.0, and
99.6% accuracy for HLA-A, HLA-B, and HLA-C, while
OptiType had 99.6, 99.4, and 100% accuracy. In addition,

HLAProfiler had 99.3 and 99.9% accuracy for DRB1 and
DQB1. Finally, we used this updated truth to estimate the
accuracy of the Sanger sequencing calls for these samples,
which was found to be 99.7, 99.1, and 99.3% for HLA-A,
HLA-B, and HLA-C and 99.0 and 99.4% for DQB1 and
DRB1. For every gene except HLA-B, HLAProfiler pro-
duced a more accurate result than Sanger sequencing for
this dataset.

New analytical methods find disease alleles missed by
gold standard technologies
In the Geuvadis data, we observed that all six callers
evaluated failed to predict one of the B gene alleles in
the gold standard reference for sample NA11840 (Fig. 3).
While the gold standard lists the sample two-field geno-
type as B*27:03 and B*57:01, each of the callers correctly
predicted (based on TruSight HLA) two-field types of
B*57:01 and B*27:05. Without the allele-refinement step,
HLAProfiler predicts B*27:05:02, which differs from
B*27:03 at a single position in the reference sequence.
Sequence coverage of the observed reads at this position
supports B*27:05:02 but also shows a gap in coverage at
position 489. Sequence reads at this position support a
G < A change in the reference for B*27:05:02. This
change corresponds to the sequence of B*27:05:03,
which is partial and contains only exons 2 and 3 in the
reference database. Running HLAProfiler with allele re-
finement correctly predicts B*27:05:03 as the top allele,
and orthogonal typing using TruSight HLA confirmed
this genotype. This level of accuracy is particularly im-
portant in this case. The HLA type B*27:05 is strongly
associated with the disease ankylosing spondylitis, while
the association of this disease with B*27:03 is less clear
[35, 36]. In this case, and two others, Sanger sequencing
inaccurately identified the HLA types, which may have
led to a misdiagnosis of the patient. This highlights the
challenge of using a database that comprises mostly par-
tial alleles (87.8% do not contain the full protein se-
quence) and some complete alleles to identify HLA
types using NGS data. These results additionally under-
score the need for allele refinement to identify gaps in
coverage caused by mismatches between observed reads
and the reference sequence. Interestingly, two other
samples, NA11832 and NA12005, also had B*27:05 as
the correct allele but had different calls reported by
Sanger (the allele group B*27:03/27:51/27:52/27:09 for
NA11832 and B*27:03/27:52/27:09 for NA12005).

HLAProfiler successfully identifies novel and partial alleles
With the B*27:05:03 allele in mind, we simulated an
RNA-seq dataset to evaluate the ability of HLAProfiler
to correctly identify the two-field HLA call or the pro-
tein sequence when only a partial sequence is available
in the reference. We leveraged updates in the IMGT/
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IPD HLA reference (v3.26.0) released after the HLAPro-
filer database was created (v3.24.0) to identify alleles
with a partial or incomplete reference sequence in the
HLAProfiler database and a completed sequence in the
more recent release. Using the rare simulation samples
as a backbone, we randomly swapped the rare allele with
one of these updated alleles per sample and simulated
new RNA-seq data using the updated and complete se-
quence (Table 1). Using allele refinement, HLAProfiler
correctly identified the exact full sequence for 67% of
the samples and the two-field precision for an additional
18% of the samples, for a total of 85% with enough infor-
mation to generate the correct protein sequence. While
other callers were able to correctly identify the allele
group (one-field precision) in most cases, they were un-
able to identify the protein (two-field) with the same ac-
curacy. Of these, PHLAT had the highest two-field
precision at 46%.
Similar to the partial alleles, we also leveraged the up-

dated database to evaluate the ability of HLAProfiler to
identify novel alleles using the sequence data. We simu-
lated novel allele sequences by replacing one allele per
sample in the rare allele simulation with an allele present
in the updated reference but not in the database refer-
ence (Table 1). After allele refinement, HLAProfiler
predicted a novel allele sequence for 75 (75%) of the
samples. For 63 (63%) of these samples the predicted se-
quence matched exactly to the sequence in the updated
database (edit distance = 0). Combined with an add-
itional 5% of alleles for which HLAProfiler was unable
to identify the novel sequence but identified the correct
two-field precision this represents a total of 68% of novel
alleles with enough information to accurately identify
the protein sequence. For the remaining 12 samples with
incorrectly predicted novel sequences and 25 samples
without predicted novel sequences the median edit dis-
tance between the predicted allele and the truth allele
was 2 (Additional file 2: Table S7).
For comparison with other callers, we also determined

the number of novel alleles correctly identified at two-
field precision without allele refinement. Of the other
callers, PHLAT had the highest two-field accuracy in

Fig. 3 HLAProfiler correctly identifies the disease-associated B*27
allele incorrectly called by the gold standard. a Sequence coverage of
RNA-seq data from NA11840 when aligned to B*27:03 (gold standard
call), B*27:05:02 (identified by RNA-seq algorithms), and B*27:05:03
(full sequence predicted by HLAProfiler with allele refinement, and
allele confirmed by TruSight HLA). Exon boundaries relative to the
allele and differences between the alleles responsible for dips in
coverage are also noted. b HLAProfiler generated comparison statistics
of the three alleles, indicating the proportion of observed reads
accounted for by the profile, the proportion of the profile accounted
for by observed reads, and the correlation between the observed reads
and the profile
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novel alleles (26%). Of the 100 samples with a novel al-
lele simulated using the updated database, only 36 con-
tained a novel allele that shared two-field precision with
an allele in the original database, highlighting the chal-
lenge of identifying the correct two-field precision of
novel alleles. It is important to note that because of the
missing two-field precisions in the database, the two-field
precision of the base allele (reported by HLAProfiler) used
to predict the correct protein sequence was often incor-
rect. Overall, HLAProfiler’s allele refinement algorithm is
an important step in overcoming the challenges of
predicting the correct protein group of partial and novel
alleles. TruSight HLA also predicted the presence of novel
alleles. HLAProfiler correctly predicted the sequences of
all three novel alleles identified by TruSight HLA
(Additional file 1: Table S8).

HLAProfiler can be expanded to call KIR types
While the underlying database of k-mer profiles is spe-
cific to HLA, the algorithms inherent to HLAProfiler are
more general and can be expanded to other genes. As a
proof of concept, we applied HLAProfiler as-is to KIR
genes, making no effort to optimize the code or tune pa-
rameters. For this, we created a KIR gene k-mer refer-
ence profile from IMGT and then randomly simulated
types for 17 different KIR genes in ten samples
(Additional file 1: Table S9). Using k-mer profiles for the
KIR genes, HLAProfiler correctly identified > 90% of
alleles for 12 of the 17 genes (70.6%). Two of the
remaining four genes had greater than 65% accuracy.
The final two genes, KIR2DL5A and KIR2DL5B, had 40
and 50% accuracy, respectively. Greatly reduced se-
quence depth after filtering, caused by high homology
between these two genes, is the likely cause of the re-
duced accuracy for these two genes (Additional file 1:
Figure S4). This proof of concept illustrates the flexibility

of HLAProfiler in identifying alleles present from other
immune-related genes, and optimizing HLAProfiler
for KIR typing will undoubtedly yield much improved
performance.

Discussion
Accurate and precise HLA typing is critical in a variety
of medical applications, such as organ transplantation,
drug safety, disease susceptibility, and neoantigen
prediction. RNA sequencing is an important source of
transcriptome-wide gene detection and quantification
and a promising source of HLA calls. Leveraging RNA-
seq data for accurate HLA typing can not only reduce
the cost, time, and input material requirements of HLA
typing but also limit the need for specialized and separ-
ate laboratory protocols and reagents. Current algo-
rithms have been limited in their ability to accurately
predict HLA types from RNA-seq data in a wide range
of HLA genes.
We have presented HLAProfiler, a k-mer profiling tool

for accurately identifying the types of a variety of HLA
genes in RNA-seq data. Our algorithm utilizes k-mer
filtering, k-mer matching and competitive sequence
matching and does not rely on traditional alignment,
phasing or assembly tools. HLAProfiler was able to
correctly identify HLA types with 100% accuracy at
exact-allele precision in simulated RNA-seq data. These
data were based on HLA types from 109 individuals,
guaranteeing that the allele combinations exist in nature
and are biologically relevant. This accuracy at such a
high precision level represents a significant advancement
over existing methods, most of which report only two-
field accuracy.
HLAProfiler also performed well with RNA-seq data

generated from lymphoblastoid cells. HLAProfiler called
HLA alleles with > 98% concordance to gold standard

Table 1 Two-field accuracy and exact sequence matching for novel and partial alleles

HLAProfiler OptiType seq2hla HLAForest HLAminer PHLAT

Novel alleles*

Sequence identified 63% - - - - -

Sequence identified or two-field accuracy 68% - - - - -

One-field accuracy 97% 15% 17% 19% 37% 96%

Two-field accuracy 25% 4% 4% 3% 10% 26%

Partial alleles

Sequence identified 67% - - - - -

Sequence identified or two-field accuracy 85% - - - - -

One-field accuracy 97% 95% 94% 19% 72% 97%

Two-field accuracy 85% 41% 21% 3% 23% 46%

Results are based on two sets of simulated data for 100 samples, each having exactly one partial allele or one novel allele. Accuracy for novel alleles is defined as
identification of the exact sequence, one-field accuracy, or two-field accuracy
*In the case of novel alleles, the correct protein sequence can be identified without correctly identifying one- or two-field precision, or one- or two-field precision
can be identified while missing the exact protein sequence
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typing at two-field precision in both class I and II alleles.
The only tool with comparable performance, OptiType,
also identified alleles with > 98% concordance but is
limited to class I alleles. In the case of discordant calls,
observed sequence reads often supported HLAProfiler
calls rather than the gold standard. Orthogonal typing
using Illumina’s TruSight HLA kit resolved these dis-
crepancies and improved HLAProfiler concordance to
greater than 99% for all genes.
HLAProfiler represents significant increases over

existing methodologies when handling rare alleles, novel
alleles, and alleles with partial reference sequences.
When creating the reference k-mer profile database,
HLAProfiler uses all available reference sequences and
does not discriminate against rare alleles. This allows
HLAProfiler to outperform all other callers, including
OptiType, when calling rare alleles. HLAProfiler also in-
cludes partial reference allele sequences in the database.
The percentage of alleles with a partial reference se-
quence in IMGT/HLA is staggering and, as demon-
strated with NA11840, having partial allele calls can
negatively impact allele calling. By identifying differences
between the observed data and the initial prediction,
HLAProfiler can correct these incorrect predictions due
to partial alleles and identify the full allele sequence.
In addition, HLAProfiler can identify the presence of

novel alleles. Identifying the presence of a novel HLA al-
lele in an individual is important, especially in cases
when the resulting protein sequence differs from the
predicted allele. HLAProfiler can not only identify the
presence of novel alleles but also predict the complete
protein sequence over 60% of the time. Novel alleles are
especially difficult to type correctly, resulting in multiple
novel alleles being predicted by TruSight HLA in sam-
ples with discordant HLA types. In these three samples,
HLAProfiler’s novel allele predictions matched exactly
with the TruSight HLA prediction. In both the simulated
and biological data, HLAProfiler successfully predicted
novel HLA transcripts in RNA-seq data, which none of
the other evaluated tools were able to do.
Despite the success of HLAProfiler in calling HLA al-

leles, HLA calling in RNA-seq data has limitations.
Mainly, the technique is limited by the expression level
of the HLA genes in the sample being evaluated. HLA
calling, especially for class II genes, in tissues with de-
creased HLA expression will be more difficult than in
whole blood or peripheral blood mononuclear cells,
where the HLA genes are highly expressed. Additionally,
HLAProfiler is sensitive to the coverage of the HLA
genes, as demonstrated by the slight decrease in per-
formance in downsampled reads. Samples with degraded
RNA, such as formalin-fixed paraffin-embedded sam-
ples, where coverage across the genes is less uniform,
might prove to be especially problematic. Improving

both laboratory procedures and algorithms to increase
the sequencing depth and coverage of HLA genes is an
area of active research.
Our work offers a prime example of the utility of

calling HLA alleles using RNA-seq data. One of the
strongest putative associations between MHC allele and
disease is the link between the B*27 antigen and AS,
with approximately 90% of AS patients being B*27-
positive [35]. For three samples, Sanger sequencing
provided an HLA type of B*27:03, while RNA-seq gave a
B*27:05 result, which was confirmed with targeted DNA
sequencing. Although B*27:05 shows a clear association
with AS, the association with B*27:03 is unclear [36]. This
example illustrates how new analytical methods can pro-
vide accurate calls in lieu of traditional gold standard
methods.
Overall, HLAProfiler offers a simple, flexible, and

user-friendly approach to calling HLA alleles in RNA-
seq data. We have also shown that HLAProfiler can be
easily adapted to identify the alleles of other classes of
genes, such as KIR genes, provided that the genes do
not have extreme homology with other transcripts, the
alleles for the gene are well curated, and only two allele
states (e.g., germline diploid) are expressed.

Conclusions
Precise and accurate identification of HLA alleles in
RNA-seq data is difficult. Using RNA-seq data, we have
demonstrated that HLAProfiler can accurately identify
common and well documented alleles as well as rare
alleles for class I and II HLA genes. Additionally, HLA-
Profiler utilizes the observed reads to detect when novel
alleles are present or when the reference allele is incom-
plete and output the correct coding sequence for the
allele. Finally, HLAProfiler successfully identified alleles
for KIR genes, which are also important to immune re-
sponse. Using HLAProfiler to reliably type HLA, and
other gene classes in RNA-seq data will further increase
the utility of these data and open the door to important
biological discoveries without an increase in finite re-
sources such as time and cost.

Availability and requirements
Project name: HLAProfiler
Project home page: https://expressionanalysis.github.io/
HLAProfiler/
Archived version: v1.0.5
Operating system: Linux, Unix
Programming language: Perl
Other requirements: EA-modified Kraken, Jellyfish
License: Custom
Any restrictions to use by non-academics: The
software is limited to non-commercial use.
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