2,357 research outputs found

    Nonlinear polarisation and dissipative correspondence between low frequency fluid and gyrofluid equations

    Full text link
    The correspondence between gyrofluid and low frequency fluid equations is examined. The lowest order conservative effects in ExB advection, parallel dynamics, and curvature match trivially. The principal concerns are polarisation fluxes, and dissipative parallel viscosity and parallel heat fluxes. The emergence of the polarisation heat flux in the fluid model and its contribution to the energy theorem is reviewed. It is shown that gyroviscosity and the polarisation fluxes are matched by the finite gyroradius corrections to advection in the long wavelength limit, provided that the differences between gyrocenter and particle representations is taken into account. The dissipative parallel viscosity is matched by the residual thermal anisotropy in the gyrofluid model in the collision dominated limit. The dissipative parallel heat flux is matched by the gyrofluid parallel heat flux variables in the collision dominated limit. Hence, the gyrofluid equations are a complete superset of the low frequency fluid equations.Comment: RevTeX 4, 28 pages, no figures, final revised version for Physics of Plasmas prior to proof stag

    When can Fokker-Planck Equation describe anomalous or chaotic transport?

    Full text link
    The Fokker-Planck Equation, applied to transport processes in fusion plasmas, can model several anomalous features, including uphill transport, scaling of confinement time with system size, and convective propagation of externally induced perturbations. It can be justified for generic particle transport provided that there is enough randomness in the Hamiltonian describing the dynamics. Then, except for 1 degree-of-freedom, the two transport coefficients are largely independent. Depending on the statistics of interest, the same dynamical system may be found diffusive or dominated by its L\'{e}vy flights.Comment: 4 pages. Accepted in Physical Review Letters. V2: only some minor change

    The Impact of Line Misidentification on Cosmological Constraints from Euclid and other Spectroscopic Galaxy Surveys

    Full text link
    We perform forecasts for how baryon acoustic oscillation (BAO) scale and redshift-space distortion (RSD) measurements from future spectroscopic emission line galaxy (ELG) surveys such as Euclid are degraded in the presence of spectral line misidentification. Using analytic calculations verified with mock galaxy catalogs from log-normal simulations we find that constraints are degraded in two ways, even when the interloper power spectrum is modeled correctly in the likelihood. Firstly, there is a loss of signal-to-noise ratio for the power spectrum of the target galaxies, which propagates to all cosmological constraints and increases with contamination fraction, fcf_c. Secondly, degeneracies can open up between fcf_c and cosmological parameters. In our calculations this typically increases BAO scale uncertainties at the 10-20% level when marginalizing over parameters determining the broadband power spectrum shape. External constraints on fcf_c, or parameters determining the shape of the power spectrum, for example from cosmic microwave background (CMB) measurements, can remove this effect. There is a near-perfect degeneracy between fcf_c and the power spectrum amplitude for low fcf_c values, where fcf_c is not well determined from the contaminated sample alone. This has the potential to strongly degrade RSD constraints. The degeneracy can be broken with an external constraint on fcf_c, for example from cross-correlation with a separate galaxy sample containing the misidentified line, or deeper sub-surveys.Comment: 18 pages, 7 figures, updated to match version accepted by ApJ (extra paragraph added at the end of Section 4.3, minor text edits

    Comparison of the COBE FIRAS and DIRBE Calibrations

    Get PDF
    We compare the independent FIRAS and DIRBE observations from the COBE in the wavelength range 100-300 microns. This cross calibration provides checks of both data sets. The results show that the data sets are consistent within the estimated gain and offset uncertainties of the two instruments. They show the possibility of improving the gain and offset determination of DIRBE at 140 and 240 microns.Comment: Accepted for publication in the Astrophysical Journal 11 pages, plus 3 figures in separate postscript files. Figure 3 has three part
    • …
    corecore