17 research outputs found

    The complete mitochondrial genome of the gadwall (Anas strepera)

    No full text
    The gadwall Anas strepera was widely distributed migratory duck in the family of Anatidae. The complete mitochondrial genome of gadwall was sequenced in this study to explore the mitogenomic characteristics and figure out its phylogenetic relationships within Anatidae. The mitogenome is a circular DNA molecule of 16600 bp in length with 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and a control region. The overall base composition of the mitogenome was A: 28.84%, T: 22.19%, G: 16.15%, C: 32.81%. Phylogenetic analysis showed that the Anas strepera was closed to Anas platyrhynchos

    Sequence and organisation of the mitochondrial genome of Japanese Grosbeak (Eophona personata), and the phylogenetic relationships of Fringillidae

    No full text
    Mitochondrial DNA is a useful molecular marker for phylogenetic and evolutionary analysis. In the current study, we determined the complete mitochondrial genome of Eophona personata, the Japanese Grosbeak, and the phylogenetic relationships of E. personata and 16 other species of the family Fringillidae based on the sequences of 12 mitochondrial protein-coding genes. The mitochondrial genome of E. personata consists of 16,771 base pairs, and contains 13 protein-coding genes, 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, and one control region. Analysis of the base composition revealed an A+T bias, a positive AT skew and a negative GC skew. The mitochondrial gene order and arrangement in E. personata was similar to the typical avian mitochondrial gene arrangement. Phylogenetic analysis of 17 species of Fringillidae, based on Bayesian inference and Maximum Likelihood (ML) estimation, showed that the genera Coccothraustes and Hesperiphona are closely related to the genus Eophona, and further showed a sister-group relationship of E. personata and E. migratoria

    Sequence and organisation of the mitochondrial genome of Japanese Grosbeak (Eophona personata), and the phylogenetic relationships of Fringillidae

    No full text
    Mitochondrial DNA is a useful molecular marker for phylogenetic and evolutionary analysis. In the current study, we determined the complete mitochondrial genome of Eophona personata, the Japanese Grosbeak, and the phylogenetic relationships of E. personata and 16 other species of the family Fringillidae based on the sequences of 12 mitochondrial protein-coding genes. The mitochondrial genome of E. personata consists of 16,771 base pairs, and contains 13 protein-coding genes, 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, and one control region. Analysis of the base composition revealed an A+T bias, a positive AT skew and a negative GC skew. The mitochondrial gene order and arrangement in E. personata was similar to the typical avian mitochondrial gene arrangement. Phylogenetic analysis of 17 species of Fringillidae, based on Bayesian inference and Maximum Likelihood (ML) estimation, showed that the genera Coccothraustes and Hesperiphona are closely related to the genus Eophona, and further showed a sister-group relationship of E. personata and E. migratoria

    A recombinant multi-epitope protein MEP1 elicits efficient long-term immune responses against HIV-1 infection

    No full text
    The effective protective HIV vaccine should elicit either protective antibodies or effective T cell response, or both. To improve the efficacy of HIV-1 vaccines, HLA polymorphism and HIV-1 diversity are 2 key factors to be considered for vaccine development. In this study, we expressed a recombinant multi-epitope protein MEP1 which has the same amino acid sequence as a DNA vaccine for Chinese population in our previous report. We found that MEP1 alone could elicit moderate levels of humoral and cellular immune responses, but these responses could not provide protection from challenge with a recombinant virus rTTV-lucgag, which expresses Gag of HIV-1 CRF_07BC. Nevertheless, when MEP1 was immunized with aluminum adjuvant, both humoral and cellular immune responses were significantly increased, and they were protective against virus infection; meanwhile, MEP1 with aluminum not only elicited early (10 d post immunization) but also a long-term (at least 44 weeks post immunization) immune responses in BALB/c mice. These results suggested that MEP1 has the potential to be developed as an effective vaccine candidate, and that suitable adjuvant is necessary for this protein to generate protective immune responses

    Adaptability and Evolution of Gobiidae: A Genetic Exploration

    No full text
    The Gobiidae family occupy one of the most diverse habitat ranges of all fishes. One key reason for their successful colonization of different habitats is their ability to adapt to different energy demands. This energy requirement is related to the ability of mitochondria in cells to generate energy via oxidative phosphorylation (OXPHOS). Here, we assembled three complete mitochondrial genomes of Rhinogobius shennongensis, Rhinogobius wuyanlingensis, and Chaenogobius annularis. These mitogenomes are circular and include 13 protein-coding genes (PCGs), two rRNAs, 22 tRNAs, and one non-coding control region (CR). We used comparative mitochondrial DNA (mtDNA) genome and selection pressure analyses to explore the structure and evolutionary rates of Gobiidae mitogenomics in different environments. The CmC model showed that the ω ratios of all mtDNA PCGs were <1, and that the evolutionary rate of adenosine triphosphate 8 (atp8) was faster in Gobiidae than in other mitochondrial DNA PCGs. We also found evidence of positive selection for several sites of NADH dehydrogenase (nd) 6 and atp8 genes. Thus, divergent mechanisms appear to underlie the evolution of mtDNA PCGs, which might explain the ability of Gobiidae to adapt to diverse environments. Our study provides new insights on the adaptive evolution of Gobiidae mtDNA genome and molecular mechanisms of OXPHOS

    In silicodesign of a DNA-based HIV-1 multi-epitope vaccine for Chinese populations

    Full text link
    General view of entry doors, from terrace looking east; In these buildings, as well as in the houses, he clearly articulated public and private zones in an attempt to clarify and redefine a sense of order, and this articulation is expressed again in the structure. For example, the High Museum of Art is a complex composition of structural forms, cylindrical and rectilinear, with the entrance and public areas defined by large expanses of windows while the gallery walls are solid, white surfaces. The relationships of solid and void are emphasized by the whiteness and by the play of sunlight and shadow on the interlocking geometric volumes. Source: Grove Art Online; http://www.groveart.com/ (accessed 1/27/2008

    Controllable Phase Transition for Layered β‑FeSe Superconductor Synthesized by Solution Chemistry

    No full text
    Low-temperature synthesis of β-FeSe superconductor from soluble precursors is a great challenge in the chemical solution approaches. Here, we develop a new and facile solution-based synthetic route to first fabricate narrow-phased β-FeSe superconductor with soluble iron and selenium sources as starting materials. The growth mechanism of β-FeSe superconductors is discussed by kinetically controllable syntheses in various reaction conditions. Chemically engineering the stoichiometry of β-FeSe products by selenium-diffusion process gives rise to a transition of antiferromagnetic-superconducting-antiferromagnetic (AFM-SC-AFM) order. Once the AFM order is suppressed, SC β-FeSe nanosheets show a tunable initial superconducting transition temperature (<i>T</i><sub>C</sub>) from 3.2 to 10 K in the superconducting regime. Electrical measurements on superconducting β-FeSe exhibit an upper critical magnetic field higher than 14 T, showing potential application of β-FeSe nanosheet for superconducting device. This method provides guidance for future applications in such chemical solutions for diffusion-controlled synthesis of narrow-phased functional materials, which are enriched of abundant fundamental physics and potentials for future applications
    corecore