130 research outputs found

    On the environmental competitiveness of sodium-ion batteries under a full life cycle perspective – a cell-chemistry specific modelling approach

    Get PDF
    Sodium-ion batteries (SIB) are among the most promising type of post-lithium batteries, being promoted for environmental friendliness and the avoidance of scarce or critical raw materials. However, the knowledge-base in this regard is weak, and comparatively little is known about the environmental performance of different SIB types in comparison with current lithium-ion batteries (LIB) under consideration of the whole battery life cycle (‘cradle-to-grave’). This work provides a complete and comprehensive update of the state of knowledge in the field of life cycle assessment of SIB. It develops and discloses a specific tool for dimensioning and assessing SIB cells, including a cell-specific model of an advanced hydrometallurgical recycling process. It provides the corresponding inventory data for five different types of SIB and compares their environmental impacts with those of competing LIB, taking into account the full life cycle (cradle-to-grave) and an individual cell dimensioning based on electrochemical considerations. Recycling is found to be highly relevant for minimizing environmental impacts of the batteries, though its benefit depends strongly on the individual cell chemistry. Deep recycling might not be favourable for cathodes based on abundant materials and could even increase impacts. Especially the assessed manganese and nickel–manganese based SIB chemistries show promising results, given that they achieve at least similar lifetimes as their LIB counterparts

    Correction: On the environmental competitiveness of sodium-ion batteries under a full life cycle perspective – a cell-chemistry specific modelling approach

    Get PDF
    Correction for ‘On the environmental competitiveness of sodium-ion batteries under a full life cycle perspective – a cell-chemistry specific modelling approach’ by Jens F. Peters et al., Sustainable Energy Fuels, 2021, 5, 6414–6429, DOI: 10.1039/D1SE01292D

    Prospective Sustainability Screening of Sodium-Ion Battery Cathode Materials

    Get PDF
    Sodium-ion batteries (SIB) are considered as a promising alternative to overcome existing sustainability challenges related to Lithium-ion batteries (LIB), such as the use of critical and expensive materials with high environmental impacts. In contrast to established LIBs, SIBs are an emerging technology in an early stage of development where a challenge is to identify the most promising and sustainable cathode active materials (CAM) for further research and potential commercialization. Thus, a comprehensive and flexible CAM screening method is developed, providing a fast and comprehensive overview of potential sustainability hotspots for supporting cathode material selection. 42 different SIB cathodes are screened and benchmarked against eight state-of-the-art LIB-cathodes. Potential impacts are quantified for the following categories: i) Cost as ten-year average; ii) Criticality, based on existing raw material criticality indicators, and iii) the life cycle carbon footprint. The results reveal that energy density is one of the most important factors in all three categories, determining the overall material demand. Most SIB CAM shows a very promising performance, obtaining better results than the LIB benchmark. Especially the Prussian Blue derivatives and the manganese-based layered oxides seem to be interesting candidates under the given prospective screening framework

    Prospective Sustainability Screening of Sodium-Ion Battery Cathode Materials

    Get PDF
    Sodium-ion batteries (SIB) are considered as a promising alternative to overcome existing sustainability challenges related to Lithium-ion batteries (LIB), such as the use of critical and expensive materials with high environmental impacts. In contrast to established LIBs, SIBs are an emerging technology in an early stage of development where a challenge is to identify the most promising and sustainable cathode active materials (CAM) for further research and potential commercialization. Thus, a comprehensive and flexible CAM screening method is developed, providing a fast and comprehensive overview of potential sustainability hotspots for supporting cathode material selection. 42 different SIB cathodes are screened and benchmarked against eight state-of-the-art LIB-cathodes. Potential impacts are quantified for the following categories: i) Cost as ten-year average; ii) Criticality, based on existing raw material criticality indicators, and iii) the life cycle carbon footprint. The results reveal that energy density is one of the most important factors in all three categories, determining the overall material demand. Most SIB CAM shows a very promising performance, obtaining better results than the LIB benchmark. Especially the Prussian Blue derivatives and the manganese-based layered oxides seem to be interesting candidates under the given prospective screening framework

    Eplerenone prevents salt-induced vascular stiffness in Zucker diabetic fatty rats: a preliminary report

    Get PDF
    Background Aldosterone levels are elevated in a rat model of type 2 diabetes mellitus, the Zucker Diabetic fatty rat (ZDF). Moreover blood pressure in ZDF rats is salt-sensitive. The aim of this study was to examine the effect of the aldosterone antagonist eplerenone on structural and mechanical properties of resistance arteries of ZDF-rats on normal and high-salt diet. Methods After the development of diabetes, ZDF animals were fed either a normal salt diet (0.28%) or a high-salt diet (5.5%) starting at an age of 15 weeks. ZDF rats on high-salt diet were randomly assigned to eplerenone (100 mg/kg per day, in food) (ZDF+S+E), hydralazine (25 mg/kg per day) (ZDF+S+H), or no treatment (ZDF+S). Rats on normal salt-diet were assigned to eplerenone (ZDF+E) or no treatment (ZDF). Normoglycemic Zucker lean rats were also divided into two groups receiving normal (ZL) or high-salt diet (ZL+S) serving as controls. Systolic blood pressure was measured by tail cuff method. The experiment was terminated at an age of 25 weeks. Mesenteric resistance arteries were studied on a pressurized myograph. Specifically, vascular hypertrophy (media-to-lumen ratio) and vascular stiffness (strain and stress) were analyzed. After pressurized fixation histological analysis of collagen and elastin content was performed. Results Blood pressure was significantly higher in salt-loaded ZDF compared to ZDF. Eplerenone and hydralazine prevented this rise similarily, however, significance niveau was missed. Media-to-lumen ratio of mesenteric resistance arteries was significantly increased in ZDF+S when compared to ZDF and ZL. Both, eplerenone and hydralazine prevented salt-induced vascular hypertrophy. The strain curve of arteries of salt-loaded ZDF rats was significantly lower when compared to ZL and when compared to ZDF+S+E, but was not different compared to ZDF+S+H. Eplerenone, but not hydralazine shifted the strain-stress curve to the right indicating a vascular wall composition with less resistant components. This indicates increased vascular stiffness in salt-loaded ZDF rats, which could be prevented by eplerenone but not by hydralazine. Collagen content was increased in ZL and ZDF rats on high-salt diet. Eplerenone and hydralazine prevented the increase of collagen content. There was no difference in elastin content. Conclusion Eplerenone and hydralazine prevented increased media-to-lumen ratio in salt-loaded ZDF-rats, indicating a regression of vascular hypertrophy, which is likely mediated by the blood pressure lowering-effect. Eplerenone has additionally the potential to prevent increased vascular stiffness in salt-loaded ZDF-rats. This suggests an effect of the specific aldosterone antagonist on adverse vascular wall remodelling

    Outcomes Following Radiofrequency Renal Denervation According to Antihypertensive Medications: Subgroup Analysis of the Global SYMPLICITY Registry DEFINE

    Get PDF
    BACKGROUND: The Global SYMPLICITY Registry DEFINE investigates radiofrequency renal denervation (RDN) in a broad range of patients with hypertension. We evaluated whether the number or type of antihypertensive medications were associated with increased long-term blood pressure (BP) reductions and cardiovascular outcomes following radiofrequency RDN. METHODS: Patients underwent radiofrequency RDN and were categorized by baseline number (0-3 and ≥4) and different combinations of medication classes. BP changes were compared between groups through 36 months. Individual and composite major adverse cardiovascular events were analyzed. RESULTS: Of 2746 evaluable patients, 18% were prescribed 0 to 3 and 82% prescribed ≥4 classes. At 36 months, office systolic BP significantly decreased (P<0.0001) by -19.0±28.3 and -16.2±28.6 mm Hg in the 0 to 3 and ≥4 class groups, respectively. Twenty-four-hour mean systolic BP significantly decreased (P<0.0001) by -10.7±19.7 and -8.9±20.5 mm Hg, respectively. BP reduction was similar between the medication subgroups. Antihypertensive medication classes decreased from 4.6±1.4 to 4.3±1.5 (P<0.0001). Most decreased (31%) or had no changes (47%) to the number of medications, while 22% increased. The number of baseline antihypertensive medication classes was inversely related to the change in prescribed classes at 36 months (P<0.001). Cardiovascular event rates were generally low. More patients in the ≥4 compared with 0 to 3 medication classes had myocardial infarction at 36 months (2.8% versus 0.3%; P=0.009). CONCLUSIONS: Radiofrequency RDN reduced BP safely through 36 months, independent of the number and type of baseline antihypertensive medication classes. More patients decreased than increased their number of medications. Radiofrequency RDN is a safe and effective adjunctive therapy regardless of antihypertensive medication regimen. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT01534299

    Cardiovascular Risk Reduction After Renal Denervation According to Time in Therapeutic Systolic Blood Pressure Range

    Get PDF
    Background: Renal denervation (RDN) has been shown to lower blood pressure (BP), but its effects on cardiovascular events have only been preliminarily evaluated. Time in therapeutic range (TTR) of BP is associated with cardiovascular events. Objectives: This study sought to assess the impact of catheter-based RDN on TTR and its association with cardiovascular outcomes in the GSR (Global SYMPLICITY Registry). Methods: Patients with uncontrolled hypertension were enrolled and treated with radiofrequency RDN. Office and ambulatory systolic blood pressure (OSBP and ASBP) were measured at 3, 6, 12, 24, and 36 months postprocedure and used to derive TTR. TTR through 6 months was assessed as a predictor of cardiovascular events from 6 to 36 months using a Cox proportional hazard regression model. Results: As of March 1, 2022, 3,077 patients were enrolled: 42.2% were female; mean age was 60.5 ± 12.2 years; baseline OSBP was 165.6 ± 24.8 mm Hg; and baseline ASBP was 154.3 ± 18.7 mm Hg. Patients were prescribed 4.9 ± 1.7 antihypertensive medications at baseline and 4.8 ± 1.9 at 36 months. At 36 months, mean changes were −16.7 ± 28.4 and −9.0 ± 20.2 mm Hg for OSBP and ASBP, respectively. TTR through 6 months was 30.6%. A 10% increase in TTR after RDN through 6 months was associated with significant risk reductions from 6 to 36 months of 15% for major adverse cardiovascular events (P < 0.001), 11% cardiovascular death (P = 0.010), 15% myocardial infarction (P = 0.023), and 23% stroke (P < 0.001). Conclusions: There were sustained BP reductions and higher TTR through 36 months after RDN. A 10% increase in TTR through 6 months was associated with significant risk reductions in major cardiovascular events from 6 to 36 months. (Global SYMPLICITY Registry [GSR] DEFINE; NCT01534299
    • …
    corecore