27 research outputs found

    Modeling of offshore pile driving noise using a semi-analytical variational formulation

    No full text
    Underwater noise radiated from offshore pile driving got much attention in recent years due to its threat to the marine environment. This study develops a three-dimensional semi-analytical method, in which the pile is modeled as an elastic thin cylindrical shell, to predict vibration and underwater acoustic radiation caused by hammer impact. The cylindrical shell, subject to the Reissner–Naghdi’s thin shell theory, is decomposed uniformly into shell segments whose motion is governed by a variational equation. The sound pressures in both exterior and interior fluid fields are expanded as analytical functions in frequency domain. The soil is modeled as uncoupled springs and dashpots distributed in three directions. The sound propagation characteristics are investigated based on the dispersion curves. The case study of a model subject to a non-axisymmetric force demonstrates that the radiated sound pressure has dependence on circumferential angle. The case study including an anvil shows that the presence of the anvil tends to lower the frequencies and the amplitudes of the peaks of sound pressure spectrum. A comparison to the measured data shows that the model is capable of predicting the pile driving noise quantitatively. This mechanical model can be used to predict underwater noise of piling and explore potential noise reduction measures to protect marine animal

    Privacy Preserved Self-Awareness on the Community via Crowd Sensing

    Get PDF
    In social activities, people are interested in some statistical data, such as purchase records, monthly consumption, and health data, which are usually utilized in recommendation systems. And it is seductive for them to acquire the ranking of these data among friends or other communities. In the meantime, they want their privacy data to be confidential. Therefore, a strategy is presented to allow users to obtain the result of calculating their privacy data while preserving these data. In this method, firstly a polynomial approximation function model is set up for each user. Afterwards, “fragment” the coefficients of each model into pieces. Eventually “blend” all scraps to build the global model of all users. Users can use the global model to gain their corresponding ranking results after a special computing. Security analyses of three aspects elaborate the validity of proposed privacy method, even if some spiteful attackers try to steal private data of users, no matter who they are (users or someone outside the community). Experiments results manifest that the global model competently fits all users data and all privacy data are protected

    Dominance-Partitioned Subgraph Matching on Large RDF Graph

    No full text
    Subgraph matching on a large graph has become a popular research topic in the field of graph analysis, which has a wide range of applications including question answering and community detection. However, traditional edge-cutting strategy destroys the structure of indivisible knowledge in a large RDF graph. On the premise of load-balancing on subgraph division, a dominance-partitioned strategy is proposed to divide a large RDF graph without compromising the knowledge structure. Firstly, a dominance-connected pattern graph is extracted from a pattern graph to construct a dominance-partitioned pattern hypergraph, which divides a pattern graph as multiple fish-shaped pattern subgraphs. Secondly, a dominance-driven spectrum clustering strategy is used to gather the pattern subgraphs into multiple clusters. Thirdly, the dominance-partitioned subgraph matching algorithm is designed to conduct all isomorphic subgraphs on a cluster-partitioned RDF graph. Finally, experimental evaluation verifies that our strategy has higher time-efficiency of complex queries, and it has a better scalability on multiple machines and different data scales

    Measurement report: quantifying source contribution of fossil fuels and biomass-burning black carbon aerosol in the southeastern margin of the Tibetan Plateau

    No full text
    Anthropogenic emissions of black carbon (BC) aerosol are transported from Southeast Asia to the southwestern Tibetan Plateau (TP) during the pre-monsoon; however, the quantities of BC from different anthropogenic sources and the transport mechanisms are still not well constrained because there have been no high-time-resolution BC source apportionments. Intensive measurements were taken in a transport channel for pollutants from Southeast Asia to the southeastern margin of the TP during the premonsoon to investigate the influences of fossil fuels and biomass burning on BC. A receptor model that coupled multi-wavelength absorption with aerosol species concentrations was used to retrieve site-specific Angstrom exponents (AAEs) and mass absorption cross sections (MACS) for BC. An "aethalometer model" that used those values showed that biomass burning had a larger contribution to BC mass than fossil fuels (BCbiomass = 57 % versus BCfossil = 43 %). The potential source contribution function indicated that BCbiomass was transported to the site from northeastern India and northern Burma. The Weather Research and Forecasting model coupled with chemistry (WRF-Chem) indicated that 40 % of BCbiomass originated from Southeast Asia, while the high BCfossil was transported from the southwest of the sampling site. A radiative transfer model indicated that the average atmospheric direct radiative effect (DRE) of BC was +4.6 +/- 2.4 W m(-2), with +2.5 +/- 1.8 W m(-2) from BCbiomass and +2.1 +/- 0.9 W m(-2 )from BCfossil. The DRE of BCbiomass and BCfossil produced heating rates of 0.07 +/- 0.05 and 0.06 +/- 0.02 K d(-1), respectively. This study provides insights into sources of BC over a transport channel to the southeastern TP and the influence of the cross-border transportation of biomass-burning emissions from Southeast Asia during the pre-monsoon

    Broadband and high-efficiency polarization conversion with a nano-kirigami based metasurface

    No full text
    Abstract Nano-kirigami metasurfaces have attracted increasing attention due to their ease of three-dimension (3D) nanofabrication, versatile shape transformations, appealing manipulation capabilities and rich potential applications in nanophotonic devices. Through adding an out-of-plane degree of freedom to the double split-ring resonators (DSRR) by using nano-kirigami method, in this work we demonstrate the broadband and high-efficiency linear polarization conversion in the near-infrared wavelength band. Specifically, when the two-dimensional DSRR precursors are transformed into 3D counterparts, a polarization conversion ratio (PCR) of more than 90% is realized in wide spectral range from 1160 to 2030 nm. Furthermore, we demonstrate that the high-performance and broadband PCR can be readily tailored by deliberately deforming the vertical displacement or adjusting the structural parameters. Finally, as a proof-of-concept demonstration, the proposal is successfully verified by adopting the nano-kirigami fabrication method. The studied nano-kirigami based polymorphic DSRR mimic a sequence of discrete bulk optical components with multifunction, thereby eliminating the need for their mutual alignment and opening new possibilities
    corecore