5 research outputs found

    Three Homology Models of PAR2 Derived from Different Templates: Application to Antagonist Discovery

    No full text
    Protease activated receptor 2 (PAR2) is an unusual G-protein coupled receptor (GPCR) involved in inflammation and metabolism. It is activated through cleavage of its N-terminus by proteases. The new N-terminus functions as a tethered ligand that folds back and intramolecularly activates PAR2, initiating multiple downstream signaling pathways. The only compounds reported to date to inhibit PAR2 activation are of moderate potency. Three structural models for PAR2 have been constructed based on sequence homology with known crystal structures for bovine rhodopsin, human ORL-1 (also called nociceptin/orphanin FQ receptor), and human PAR1. The three PAR2 model structures were compared and used to predict potential interactions with ligands. Virtual screening for ligands using the Chembridge database, and either ORL-1 or PAR1 derived PAR2 models led to identification of eight new small molecule PAR2 antagonists (IC<sub>50</sub> 10–100 μM). Notably, the most potent compound <b>1</b> (IC<sub>50</sub> 11 μM) was derived from the less homologous template protein, human ORL-1. The results suggest that virtual screening against multiple homology models of the same GPCR can produce structurally diverse antagonists and that this may be desirable even when some models have less sequence homology with the target protein

    Hyaluronic Acid-Functionalized Gold Nanorods with pH/NIR Dual-Responsive Drug Release for Synergetic Targeted Photothermal Chemotherapy of Breast Cancer

    No full text
    Tumor-targeted delivery of photothermal agent and controlled release of concomitant chemotherapeutic drug are two key factors for combined photothermal chemotherapy. Herein, we developed a pH/near-infrared (NIR) dual-triggered drug release nanoplatform based on hyaluronic acid (HA)-functionalized gold nanorods (GNRs) for actively targeted synergetic photothermal chemotherapy of breast cancer. Targeting folate (FA), dopamine, and adipic acid dihydrazide triconjugated HA was first synthesized and used to decorate GNRs via Au–catechol bonds, and then an anticarcinogen doxorubicin (DOX) was conjugated onto HA moieties via an acid-labile hydrazone linkage, resulting in multifunctional nanoparticles GNRs-HA-FA-DOX. The nanoparticles exhibited excellent stability and had a pH and NIR dual-responsive drug release behavior. In vitro studies showed that the nanoparticles could be efficiently internalized into breast cancer MCF-7 cells and kill them under NIR irradiation in a synergistic fashion via inducing cell apoptosis. Pharmacokinetics and biodistribution studies in tumor-bearing mice indicated that the nanoparticles had a long blood circulation with a half-life of 2.4 h and exhibited a high accumulation of 11.3% in tumor site. The tumors of mice treated with combined chemotherapy and photothermal therapy were completely suppressed without obvious systemic toxicity after 20 d of treatment. These results demonstrated a great potential of GNRs-HA-FA-DOX nanoparticles for targeted synergistic therapy of breast cancer

    Il bilancio pluriennale nel nuovo ordinamento finanziario e contabile degli enti locali

    No full text
    Virtual screening of a drug database identified Carvedilol, Loratadine, Nefazodone and Astemizole as PAR2 antagonists, after ligand docking and molecular dynamics simulations using a PAR2 homology model and a putative binding mode of a known PAR2 ligand. The drugs demonstrated competitive binding and antagonism of calcium mobilization and ERK1/2 phosphorylation in CHO-hPAR2 transfected cells, while inhibiting IL-6 secretion in PAR2 expressing MDA-MB-231 breast cancer cells. This research highlights opportunities for GPCR hit-finding from FDA-approved drugs

    Discovery of Novel Small Molecule Inhibitors of Dengue Viral NS2B-NS3 Protease Using Virtual Screening and Scaffold Hopping

    No full text
    By virtual screening, compound <b>1</b> was found to be active against NS2B-NS3 protease (IC<sub>50</sub> = 13.12 ± 1.03 μM). Fourteen derivatives (<b>22</b>) of compound <b>1</b> were synthesized, leading to the discovery of four new inhibitors with biological activity. In order to expand the chemical diversity of the inhibitors, small-molecule-based scaffold hopping was performed on the basis of the common scaffold of compounds <b>1</b> and <b>22</b>. Twenty-one new compounds (<b>23</b>, <b>24</b>) containing quinoline (new scaffold) were designed and synthesized. Protease inhibition assays revealed that 12 compounds with the new scaffold are inhibitors of NS2B-NS3 protease. Taken together, 17 new compounds were discovered as NS2B-NS3 protease inhibitors with IC<sub>50</sub> values of 7.46 ± 1.15 to 48.59 ± 3.46 μM, and 8 compounds belonging to two different scaffolds are active to some extent against DENV based on luciferase reporter replicon-based assays. These novel chemical entities could serve as lead structures for discovering therapies against DENV

    Crystal Structures of SgcE6 and SgcC, the Two-Component Monooxygenase That Catalyzes Hydroxylation of a Carrier Protein-Tethered Substrate during the Biosynthesis of the Enediyne Antitumor Antibiotic C‑1027 in <i>Streptomyces globisporus</i>

    No full text
    C-1027 is a chromoprotein enediyne antitumor antibiotic produced by <i>Streptomyces globisporus</i>. In the last step of biosynthesis of the (<i>S</i>)-3-chloro-5-hydroxy-β-tyrosine moiety of the C-1027 enediyne chromophore, SgcE6 and SgcC compose a two-component monooxygenase that hydroxylates the C-5 position of (<i>S</i>)-3-chloro-β-tyrosine. This two-component monooxygenase is remarkable for two reasons. (i) SgcE6 specifically reacts with FAD and NADH, and (ii) SgcC is active with only the peptidyl carrier protein (PCP)-tethered substrate. To address the molecular details of substrate specificity, we determined the crystal structures of SgcE6 and SgcC at 1.66 and 2.63 Å resolution, respectively. SgcE6 shares a similar β-barrel fold with the class I HpaC-like flavin reductases. A flexible loop near the active site of SgcE6 plays a role in FAD binding, likely by providing sufficient space to accommodate the AMP moiety of FAD, when compared to that of FMN-utilizing homologues. SgcC shows structural similarity to a few other known FADH<sub>2</sub>-dependent monooxygenases and sheds light on some biochemically but not structurally characterized homologues. The crystal structures reported here provide insights into substrate specificity, and comparison with homologues provides a catalytic mechanism of the two-component, FADH<sub>2</sub>-dependent monooxygenase (SgcE6 and SgcC) that catalyzes the hydroxylation of a PCP-tethered substrate
    corecore