21 research outputs found

    Vitamin E Inhibits Osteoclastogenesis in Protecting Osteoporosis

    Get PDF
    The most common orthopedic condition affecting senior adults is osteoporosis, which is defined by a decrease in bone mass and strength as well as microstructural degradation that leads to fragility fractures. Bone remodeling is a well-planned, ongoing process that replaces deteriorated, old bone with new, healthy bone. Bone resorption and bone creation work together during the cycle of bone remodeling to preserve the bone’s volume and microarchitecture. The only bone-resorbing cells in the human body, mononuclear preosteoclasts fuse to form osteoclasts, are multinucleated cells. In numerous animal models or epidemiological studies, vitamin E’s anti-osteoporotic characteristics have been extensively described. This review aims to summarize recent developments in vitamin E’s molecular features as a bone-protective agent. In RANKL/RANK/OPG signaling pathway, vitamin E inhibits synthesis of RANKL, stimulation of c-Fos, and increase level of OPG. Vitamin E also inhibits inflammatory cytokines, such as TNF-α, IL-1, IL-6, IL-27, and MCP-1, negative regulating the JAK–STAT, NF-κB, MAPK signaling pathways. Additionally, vitamin E decreases malondialdehyde and increases superoxide dismutase, GPx and heme oxygenase-1, in suppressing osteoclasts. In this article, we aim to give readers the most recent information on the molecular pathways that vitamin E uses to enhance bone health

    A peak time shifting phenomenon in transformer axial short‐circuit electromagnetic force due to the coupling of electromagnetic‐axial vibration

    No full text
    Abstract Accurately calculating axial electromagnetic force is essential to analyse transformer winding axial stability. Prior research has mainly focused on the effect of winding structure on static axial electromagnetic force and studying vibration by substituting the static force in a time‐varying function. However, the coupling effect between axial electromagnetic force and winding vibration has not been addressed, and no calculation method for the axial electromagnetic force that considers both winding meso‐structures and vibration coupling effects has been proposed. Previously the authors presented an electromagnetic force calculation model that considers winding structure characteristics, and an iterative algorithm for magnetic‐structure coupling calculation. Currently, the winding vibration model was first proposed and the dynamic calculation method was formulated. By applying the method to a typical 110kV transformer, the spatial‐temporal distribution of winding axial short‐circuit electromagnetic force was obtained. It was found that the peak value of the axial short‐circuit electromagnetic force of some windings appears at the second or third peak moment of the short‐circuit current, which is called as peak time shift phenomenon. Further stress analysis indicates that existing evaluation methods may overestimate the short‐circuit resistance of windings by only considering short‐circuit electromagnetic force under maximum peak of short‐circuit current

    Short‐circuit current difference of parallel strands in winding turns and its influence on the distribution of electromagnetic force

    No full text
    Abstract Transformer winding turns often consist of multiple parallel strands. The spatial position variation of each strand affects the leakage inductance of each branch, resulting in an uneven distribution of short‐circuit currents within the winding turns. And this unevenness persists even when transposition structures are implemented. Traditional methods in transformer analysis frequently overlooked the distribution characteristics of short‐circuit currents when calculating electromagnetic forces. A frequency‐domain calculation method for analysing the current distribution in winding turns was proposed, with a deviation of less than 3% compared to existing analysis methods. Two typical 110 kV transformer models were utilised to investigate the influence of uneven current distribution on the spatial distribution of electromagnetic forces. The spatial distribution of short‐circuit electromagnetic forces in low‐voltage (LV) windings exhibited significant changes, with maximum change rates of 10% and 61.2% for axial and radial electromagnetic force, respectively, in a LV winding with 4 parallel strands. The research also analysed how strand radial width and axial height affect current distribution unevenness and proposed specific design principles to mitigate these disparities in winding design. The findings offer valuable insights for selecting structural parameters and assessing short‐circuit stability during transformer design

    Light-controlled movement of microbubble

    No full text
    The video shows the microbubble moving as the side-lead-in single mode fiber (SMF) moves when the single-frequency 1550 nm laser is turned on

    Turn on the 1550nm laser

    No full text
    The video shows the movement of the microbubble towards the light source when the single-frequency 1550 nm laser is suddenly switched on

    The Therapeutic Effect of ICAM-1-Overexpressing Mesenchymal Stem Cells on Acute Graft-Versus-Host Disease

    No full text
    Background/Aims: Mesenchymal stem cells (MSCs) do not readily migrate to appropriate sites, and this creates a major obstacle for their use in the treatment of graft-versus-host disease (GVHD). Intercellular adhesion molecule-1 (ICAM-1) can guide the homing of various immune cells to the proper anatomical location within secondary lymphoid organs (SLOs), which are the major niches for generating immune responses or tolerance. MSCs rarely migrate to SLOs after intravenous infusion, and are constitutively low expression of ICAM-1. So in our previous work, ICAM-1 was engineered into a murine MSC line C3H10T1/2 by retrovirus transfection system (ICAM-1MSCs). Here, we hypothesized that ICAM-1highMSCs may significantly improve their immunomodulatory effect. Methods: We used different co-culture methods combined with real-time PCR and flow cytometry to evaluate ICAM-1highMSCs immunomodulatory effect on dendritic cells (DCs) and T cells in vitro and in vivo. MSCs were labeled with carboxyfluorescein diacetate succinimidylester (CFSE) to detect its distribution in mouse model. Results: Our in vitro analyses revealed ICAM-1 MSCs could suppress DCs maturation according to co-culture methods and suppress the T cell immune response according to the mixed lymphocyte response (MLR) and lymphoblast transformation test (LTT) tests. We found that infusion of ICAM-1highMSCs potently prolonged the survival of GVHD mouse model. The infused ICAM-1highMSCs migrate to SLOs in vivo, and suppressed DCs maturation, suppressed CD4+ T cell differentiation to Th1 cells, and increased the ratios of Treg cells. Conclusions: Taken together, these data demonstrate that ICAM-1highMSCs had an enhanced immunosuppressive effect on DCs and T cells, which may help explain the protective effect in a GVHD model. This exciting therapeutic strategy may improve the clinical efficacy of MSC-based therapy for GVHD

    Electrified Operando-Freezing of Electrocatalytic CO2 Reduction Cells for Cryogenic Electron Microscopy

    No full text
    The ability to freeze and stabilize reaction intermediates in their metastable states and obtain their structural and chemical information with high spatial resolution would be very powerful to unravel the fundamentals in many important materials technologies such as catalysis and batteries. Here, we develop an electrified operando-freezing methodology for the first time to preserve these metastable states under electrochemical reaction conditions for cryogenic electron microscopy (cryo-EM) imaging and spectroscopy. Using Cu catalysts for CO2 reduction as a model system, we observe restructuring of the Cu catalyst in a CO2 atmosphere while the same catalyst remains intact in an air atmosphere at the nanometer scale. Furthermore, we discover the existence of single valance Cu (1+) state and C-O bonding at the electrified liquid-solid interface of the operando-frozen samples, which are key reaction intermediates that traditional ex situ measurements fail to detect. This work highlights our novel technique to study the local structure and chemistry of electrified liquid-solid interfaces, which has broad impact for many electrochemical reactions
    corecore