390 research outputs found

    Good vibrations: Do electrical therapeutic massagers work?

    Get PDF
    Health, leisure and beauty activities are increasing in popularity, with a particular emphasis on self-help and alternative health practices. One product type that has increased sales with this expansion is the hand-held electric massager. These are products that use vibration as a means of alleviating muscular strains and pains, as well as promoting relaxation. Paradoxically, these products are extremely popular as gifts, but are soon discarded. A multi-disciplinary research team was commissioned by a British manufacturer of electrical consumer products to investigate user attitudes and perceptions of existing massagers, to identify areas of user dissatisfaction. The manufacturer was also concerned about a possible stigma attached to these products because of an association with sex aids. This paper provides an account of the perceptions of both consumers and therapists regarding the use of these products. Identifying the differences between the perceptions of consumers and therapists should help provide a basis for effective integration of user needs, manufacturer requirements, designers’ skills and sound therapeutic practice. The results provide insight to support the development of more effective hand-held massagers

    Opinion piece: non-traditional practical work for traditional campuses

    Get PDF
    Traditional practical work for higher education in STEM subjects is under pressure from rising student numbers and adesired increase in active learning. Investing in more buildings and staff is financially challenging, while stretching existing resources affects outcomes, health, and participation. A more pragmatic approach is to embrace a less instrumentalist view of practical work in physical spaces and instead adopt a critical post-humanist approach which mixes both humanity and technology to achieve a sum greater than the parts, not bound by the limits of either. We share the experiences of leading UK exponents of non-traditional laboratories in the four main categories of simulation, virtual laboratories, real-asynchronous, and real- synchronous activities, as well as experts in scaling digital education initiatives for university-wide adoption. We foreshadow opportunities, challenges and potential solutions to increasing the opportunity for active learning by students studying at traditional campuses, via the complementary addition of non-traditional practical work

    Physical Therapy Recommendations for Service Members With Mild Traumatic Brain Injury

    Get PDF
    Mild traumatic brain injuries (MTBIs) are of increasing concern in both the military and civilian populations as the potential long-term effects and costs of such injuries are being further recognized. Injuries from conflicts in Afghanistan and Iraq have increased public awareness and concern for TBI. The Proponency Office for Rehabilitation and Reintegration, Office of the Surgeon General, US Army tasked a team of physical and occupational therapists to assemble evidence-informed guidelines for assessment and intervention specific to MTBI. Given the paucity of specific guidelines for physical therapy related to MTBI, we focused on literature that dealt with the specific problem area or complaint of the Service member following MTBI. Recommendations, characterized as practice standards or practice options based on strength of evidence, are provided relative to patient/client education, activity intolerance, vestibular dysfunction, high-level balance dysfunction, posttraumatic headache, temporomandibular disorder, attention and dual-task performance deficits, and participation in exercise. While highlighting the need for additional research, this work can be considered a starting point and impetus for the development of evidence-based practice in physical therapy for our deserving Service members

    Theory of Spin-Resolved Auger-Electron Spectroscopy from Ferromagnetic 3d-Transition Metals

    Full text link
    CVV Auger electron spectra are calculated for a multi-band Hubbard model including correlations among the valence electrons as well as correlations between core and valence electrons. The interest is focused on the ferromagnetic 3d-transition metals. The Auger line shape is calculated from a three-particle Green function. A realistic one-particle input is taken from tight-binding band-structure calculations. Within a diagrammatic approach we can distinguish between the \textit{direct} correlations among those electrons participating in the Auger process and the \textit{indirect} correlations in the rest system. The indirect correlations are treated within second-order perturbation theory for the self-energy. The direct correlations are treated using the valence-valence ladder approximation and the first-order perturbation theory with respect to valence-valence and core-valence interactions. The theory is evaluated numerically for ferromagnetic Ni. We discuss the spin-resolved quasi-particle band structure and the Auger spectra and investigate the influence of the core hole.Comment: LaTeX, 12 pages, 8 eps figures included, Phys. Rev. B (in press
    • …
    corecore