1,957 research outputs found

    Embedded AGN and star formation in the central 80 pc of IC 3639

    Full text link
    [Abridged] Methods: We use interferometric observations in the NN-band with VLTI/MIDI to resolve the mid-IR nucleus of IC 3639. The origin of the nuclear infrared emission is determined from: 1) the comparison of the correlated fluxes from VLTI/MIDI with the fluxes measured at subarcsec resolution (VLT/VISIR, VLT/ISAAC); 2) diagnostics based on IR fine-structure line ratios, the IR continuum emission, IR bands produced by polycyclic aromatic hydrocarbons (PAH) and silicates; and 3) the high-angular resolution spectral energy distribution. Results: The unresolved flux of IC 3639 is 90±20 mJy90 \pm 20\, \rm{mJy} at 10.5 μm10.5\, \rm{\mu m}, measured with three different baselines in VLTI (UT1-UT2, UT3-UT4, and UT2-UT3; 4646-58 m58\, \rm{m}), making this the faintest measurement so far achieved with mid-IR interferometry. The correlated flux is a factor of 33-44 times fainter than the VLT/VISIR total flux measurement. The observations suggest that most of the mid-IR emission has its origin on spatial scales between 1010 and 80 pc80\, \rm{pc} (4040-340 mas340\, \rm{mas}). A composite scenario where the star formation component dominates over the AGN is favoured by the diagnostics based on ratios of IR fine-structure emission lines, the shape of the IR continuum, and the PAH and silicate bands. Conclusions: A composite AGN-starburst scenario is able to explain both the mid-IR brightness distribution and the IR spectral properties observed in the nucleus of IC 3639. The nuclear starburst would dominate the mid-IR emission and the ionisation of low-excitation lines (e.g. [NeII]12.8μm_{12.8 \rm{\mu m}}) with a net contribution of ∼70%\sim 70\%. The AGN accounts for the remaining ∼30%\sim 30\% of the mid-IR flux, ascribed to the unresolved component in the MIDI observations, and the ionisation of high-excitation lines (e.g. [NeV]14.3μm_{14.3 \rm{\mu m}} and [OIV]25.9μm_{25.9 \rm{\mu m}}).Comment: Accepted for publication in A&

    On the changes in the physical properties of the ionized region around the Weigelt structures in Eta Carinae over the 5.54-yr spectroscopic cycle

    Full text link
    We present HST/STIS observations and analysis of two prominent nebular structures around the central source of Eta Carinae, the knots C and D. The former is brighter than the latter for emission lines from intermediate or high ionization potential ions. The brightness of lines from intermediate and high ionization potential ions significantly decreases at phases around periastron. We do not see conspicuous changes in the brightness of lines from low ionization potential (<13.6 eV) that the total extinction towards the Weigelt structures is that the total extinction towards the Weigelt structures is AsubV =2/0. that the total extinction towards the Weigelt structures is AV = 2.0. Weigelt C and D are characterized by an electron density of that the total extinction towards the Weigelt structures is AV = 2.0. Weigelt C and D are characterized by an electron density of 10exp6.9 cm-3 that does not significantly change throughout the orbital cycle. The electron temperature varies from 5500 K (around periastron) to 7200 K (around apastron). The relative changes in the brightness of He I lines are well reproduced by the variations in the electron temperature alone. We found that, at phases around periastron, the electron temperature seems to be higher for Weigelt C than that of D. The Weigelt structures are located close to the Homunculus equatorial plane, at a distance of about 1240 AU from the central source. From the analysis of proper motion and age, the Weigelt complex can be associated with the equatorial structure called the Butterfly Nebula surrounding the central binary system.Comment: 19 pages, 18 figure

    On the Formation of Multiple-Shells Around Asymptotic Giant Branch Stars

    Full text link
    Two types of models for the formation of semi-periodic concentric multiple shells (M-shells) around asymptotic giant branch (AGB) stars and in planetary nebulae are compared against observations. Models that attribute the M-shells to processes in an extended wind acceleration zone around AGB stars result in an optically thick acceleration zone, which reduces the acceleration efficiency in outer parts of the extended acceleration zone. This makes such models an unlikely explanation for the formation of M-shells. Models which attribute the M-shell to semi-periodic variation in one or more stellar properties are most compatible with observations. The only stellar variation models on time scales of 50-1500 years that have been suggested are based on an assumed solar-like magnetic cycle. Although ad-hoc, the magnetic cycle assumption fits naturally into the increasingly popular view that magnetic activity plays a role in shaping the wind from upper AGB stars.Comment: 8 pages, Submitted to Ap

    Mid-infrared spectra of late-type stars: Long-term evolution

    Full text link
    Recent ground-based mid-infrared spectra of 29 late-type stars, most with substantial dust shells, are compared to ground-based spectra of these stars from the 1960s and 1970s and to IRAS-LRS spectra obtained in 1983. The spectra of about half the stars show no detectable changes, implying that their distributions of circumstellar material and associated dust grain properties have changed little over this time interval. However, many of the stars with strong silicate features showed marked changes. In nearly all cases the silicate peak has strengthened with respect to the underlying continuum, although there is one case (VY~CMa) in which the silicate feature has almost completely disappeared. This suggests that, in general, an oxygen-rich star experiences long periods of gradual silicate feature strengthening, punctuated by relatively rare periods when the feature weakens. We discuss various mechanisms for producing the changes, favoring the slow evolution of the intrinsic dust properties (i.e., the chemical composition or grain structure). Although most IRAS spectra agree well with ground-based spectra, there are a number of cases where they fall well outside the expected range of uncertainty. In almost all such cases the slopes of the red and blue LRS spectra do not match in their region of overlap.Comment: Accepted in ApJ, 20 pages, 5 figures, 1 tabl

    Diffraction-Limited Imaging and Photometry of NGC 1068

    Get PDF
    The nearby Seyfert 2 Galaxy NGC 1068 was observed with speckle imaging techniques in the near-infrared H-band (1.6 microns) at the Hale 200-inch Telescope and K-band (2.2 microns) at the 10 m Keck I Telescope. Images with diffraction limited or near-diffraction limited resolutions of 0.''05 - 0.''1 were obtained and used to search for structure in the nuclear region. Images of the nucleus of NGC 1068 reveal an extended region of emission which accounts for nearly 50% of the nuclear flux at K-band. This region extends 10 pc on either side of an unresolved point source nucleus which is at most, 0.''02 or 1.4 pc in size. Both the point source and the newly imaged extended emission are very red, with identical H-K colors corresponding to a color temperature of 800 K. While the point source is of a size to be consistent with grains in thermal equilibrium with the nuclear source, the extended emission is not. It must consist either of nuclear emission which has been reflected off an extended dusty disk or of small grains raised to transiently high temperatures by reflected UV photons.Comment: accepted to AJ, AAS LaTeX and epsfig, 22 pages incl. 5 ps figure

    The UV Scattering Halo of the Central Source Associated with Eta Carinae

    Full text link
    We have made an extensive study of the UV spectrum of Eta Carinae, and find that we do not directly observe the star and its wind in the UV. Because of dust along our line of sight, the UV light that we observe arises from bound-bound scattering at large impact parameters. We obtain a reasonable fit to the UV spectrum by using only the flux that originates outside 0.033". This explains why we can still observe the primary star in the UV despite the large optical extinction -- it is due to the presence of an intrinsic coronagraph in the Eta Carinae system, and to the extension of the UV emitting region. It is not due to peculiar dust properties alone. We have computed the spectrum of the purported companion star, and show that it could only be directly detected in the UV spectrum preferentially in the Far Ultraviolet Spectroscopic Explorer (FUSE) spectral region (912-1175 Ang.). However, we find no direct evidence for a companion star, with the properties indicated by X-ray studies and studies of the Weigelt blobs, in UV spectra. This might be due to reprocessing of the companion's light by the dense stellar wind of the primary. Broad FeII and [FeII] emission lines, which form in the stellar wind, are detected in spectra taken in the SE lobe, 0.2" from the central star. The wind spectrum shows some similarities to the spectra of the B & D Weigelt blobs, but also shows some marked differences in that high excitation lines, and lines pumped by Ly-alpha, are not seen. The detection of the broad lines lends support to our interpretation of the UV spectrum, and to our model for Eta Carinae.Comment: To appear in ApJ. 57 pages with 18 figure

    The origin of runaway stars

    Full text link
    Milli-arcsecond astrometry provided by Hipparcos and by radio observations makes it possible to retrace the orbits of some of the nearest runaway stars and pulsars to determine their site of origin. The orbits of the runaways AE Aurigae and mu Columbae and of the eccentric binary iota Orionis intersect each other about 2.5 Myr ago in the nascent Trapezium cluster, confirming that these runaways were formed in a binary-binary encounter. The path of the runaway star zeta Ophiuchi intersects that of the nearby pulsar PSR J1932+1059, about 1 Myr ago, in the young stellar group Upper Scorpius. We propose that this neutron star is the remnant of a supernova that occurred in a binary system which also contained zeta Oph, and deduce that the pulsar received a kick velocity of about 350 km/s in the explosion. These two cases provide the first specific kinematic evidence that both mechanisms proposed for the production of runaway stars, the dynamical ejection scenario and the binary-supernova scenario, operate in nature.Comment: 5 pages, including 2 eps-figures and 1 table, submitted to the ApJ Letters. The manuscript was typeset using aaste
    • …
    corecore