50 research outputs found
Design and control of a 10 DOF biped robot
Compared to wheeled robots, biped robots have their advantages. Biped robots have better mobility. Biped robots can walk in human environments, such as rough terrain and the place that contains obstacles, and can also climb stairs or ladders. A biped robot has "discrete" footholds; therefore, it does not require a continuous path of support as wheeled robots. Moreover, biped robots can turn around in a small area. However, it is more difficult to balance and control the biped robot, especially on the rough or slope surface, compared to wheeled robots
Analyzing eventual leader election protocols for dynamic systems by probabilistic model checking
Leader election protocols have been intensively studied in distributed computing, mostly in the static setting. However, it remains a challenge to design and analyze these protocols in the dynamic setting, due to its high uncertainty, where typical properties include the average steps of electing a leader eventually, the scalability etc. In this paper, we propose a novel model-based approach for analyzing leader election protocols of dynamic systems based on probabilistic model checking. In particular, we employ a leading probabilistic model checker, PRISM, to simulate representative protocol executions. We also relax the assumptions of the original model to cover unreliable channels which requires the introduction of probability to our model. The experiments confirm the feasibility of our approach
Multiple organ infection and the pathogenesis of SARS
After >8,000 infections and >700 deaths worldwide, the pathogenesis of the new infectious disease, severe acute respiratory syndrome (SARS), remains poorly understood. We investigated 18 autopsies of patients who had suspected SARS; 8 cases were confirmed as SARS. We evaluated white blood cells from 22 confirmed SARS patients at various stages of the disease. T lymphocyte counts in 65 confirmed and 35 misdiagnosed SARS cases also were analyzed retrospectively. SARS viral particles and genomic sequence were detected in a large number of circulating lymphocytes, monocytes, and lymphoid tissues, as well as in the epithelial cells of the respiratory tract, the mucosa of the intestine, the epithelium of the renal distal tubules, the neurons of the brain, and macrophages in different organs. SARS virus seemed to be capable of infecting multiple cell types in several organs; immune cells and pulmonary epithelium were identified as the main sites of injury. A comprehensive theory of pathogenesis is proposed for SARS with immune and lung damage as key features
IMAGE COMPRESSION BY FRACTAL TECHNIQUES AND FUZZY CLASSIFICATION
Master'sMASTER OF SCIENC
Cell division in the cerebral cortex of adult rats after photothrombotic ring stroke
AbstractNeurogenesis has been shown to occur in the cerebral cortex in adult rats after ischemic stroke. The origin of the newborn neurons is largely unknown. This study aimed to explore cell division in the poststroke penumbral cortex. Adult male Wistar rats were subjected to photothrombotic ring stroke. After repeated delivery of the DNA duplication marker BrdU, the animals were sacrificed at various times poststroke. BrdU was detected by immunohistochemistry/immunofluorescence labeling, as was the M-phase marker Phos H3 and the spindle components α-tubulin/γ-tubulin. DNA damage was examined by TUNEL staining. Cell type was ascertained by double immunolabeling with the neuronal markers Map-2ab/β-tubulin III and NeuN/Hu or the astrocyte marker GFAP. From 16h poststroke, BrdU-immunolabeled cells appeared in the penumbral cortex. From 24h, Phos H3 was colocalized with BrdU in the nuclei. Mitotic spindles immunolabeled by α-tubulin/γ-tubulin appeared inside the cortical cells containing BrdU-immunopositive nuclei. Unexpectedly, the markers of neuronal differentiation, Map-2ab/β-tubulin III/NeuN/Hu, were expressed in the Phos H3-immunolabeled cells, and NeuN was detected in some cells containing spindles. This study suggests that in response to a sublethal ischemic insult, endogenous cells with neuronal immunolabeling may duplicate their nuclear DNA and commit cell mitosis to generate daughter neurons in the penumbral cortex in adult rats