12 research outputs found

    Design strategies of tumor-targeted delivery systems based on 2D nanomaterials

    Get PDF
    Conventional chemotherapy and radiotherapy are nonselective and nonspecific for cell killing, causing serious side effects and threatening the lives of patients. It is of great significance to develop more accurate tumor-targeting therapeutic strategies. Nanotechnology is in a leading position to provide new treatment options for cancer, and it has great potential for selective targeted therapy and controlled drug release. 2D nanomaterials (2D NMs) have broad application prospects in the field of tumor-targeted delivery systems due to their special structure-based functions and excellent optical, electrical, and thermal properties. This review emphasizes the design strategies of tumor-targeted delivery systems based on 2D NMs from three aspects: passive targeting, active targeting, and tumor-microenvironment targeting, in order to promote the rational application of 2D NMs in clinical practice.This work was supported by the Guangdong Basic and Applied Basic Research Foundation (Nos. 2021A1515110657 and 2022A1515010056), Shenzhen Science and Technology Program (Grant No. RCBS20210609104513023), National Natural Science Foundation of China (No. 81922037), and Shanghai Biomedical Science and Technology Support Project (No. 19441903600)

    Treatment of chronic bleeding of the small intestine in Rendu-Osler-Weber disease with argon plasma coagulation under double-balloon enteroscopy

    No full text
    A 39-year-old man with chronic bleeding from Rendu-Osler-Weber disease in the small intestine was treated with argon plasma coagulation using a custom-made probe under double-balloon enteroscopy. A 10 month follow-up showed no evidence of bleeding

    MicroRNA-134 deactivates hepatic stellate cells by targeting TGF-β activated kinase 1-binding protein 1

    No full text
    Aberrant expression of microRNAs is associated with liver fibrogenesis. We previously found that microRNA-134 (miR-134) expression was reduced in fibrosis-based hepatocarcinogenesis induced by diethylinitrosamine. Herein we investigate the role and mechanisms of miR-134 in hepatic fibrosis. Our data showed that miR-134 expression was reduced in rat hepatic fibrogenesis induced by carbontetrachloride, bile duct ligation, and dimethylnitrosamine, as well as in activated HSCs. Moreover, miR-134 inhibited hepatic stellate cell (HSC) proliferation, and decreased the expression of smooth muscle actin and collagen I in HSCs, whereas the miR-134 inhibitor increased HSC activation. miR-134 also negatively regulated Transforming growth factor-β-activated kinase 1-binding protein 1 (TAB1) expression in both human and rat HSCs by directly binding to its 3â untranslated region. Importantly, TAB1 expression was significantly elevated during liver fibrogenesis and HSC activation. Knockdown of TAB1 inhibited the proliferation and fibrogenic behavior of HSCs, and significantly reduced the effect of the miR-134 inhibitor on HSC proliferation. Collectively, these data suggest that miR-134 inhibits the activation of HSCs via directly targeting TAB1, and the restoration of miR-134 or targeting TAB1 is of clinical significance in the treatment of liver fibrosis.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Bacterial Metabolite Reuterin Attenuated LPS-Induced Oxidative Stress and Inflammation Response in HD11 Macrophages

    No full text
    Reuterin is well-known for its broad-spectrum antimicrobial ability, while the other potential bioactivity is not yet clear. The present study aims to investigate the immunomodulatory activity of reuterin on chicken macrophage HD11 cells for the first time and evaluate whether reuterin is able to regulate the lipopolysaccharide-stimulated inflammatory response. The results showed that the safe medication range of reuterin was less than 250 μM. Reuterin treatment for 6 h decreased the transcriptional of CD86, IL-1β and iNOS and increased the expression of CD206 in a dose-dependent way, but reuterin treatment for 12 h contrary increased the expression of IL-1β, IL-6 and IL-10. However, it was noticed that reuterin treatment for 12 h significantly decreased the production of reactive oxygen species (ROS) and suppressed the phagocytosis activity of HD11 macrophages against bacteria. Further, the results showed that preincubation or coincubation with reuterin significantly attenuated the promotive effects of lipopolysaccharide (LPS) on transcription of proinflammatory cytokines (including IL-1β, IL-6 and TNF-α) and obviously inhibited nitric oxide (NO) production as well as the protein expression of inducible nitric oxide synthase (iNOS). Meanwhile, Mechanism studies implied that reuterin might exert an anti-inflammatory effect on LPS-stimulated cells by downregulating the expression of TLR4/MyD88/TRAF6 and blocking the activation of NF-κB as well as MAPKs signaling pathways. Additionally, it was found that both pretreatment and cotreatment with reuterin remarkably inhibited the oxidative stress induced by LPS stimulation by activating the Nrf2/HO-1 signaling pathway and enhancing the activities of antioxidative enzymes. These findings suggested the immunoregulatory function of reuterin and indicated this bacterial metabolite was able to inhibit the inflammation and oxidative stress of HD11 macrophages once exposed to LPS stimulation

    EPSP of L. casei BL23 Protected against the Infection Caused by Aeromonas veronii via Enhancement of Immune Response in Zebrafish

    No full text
    Aquaculture is the fastest-growing food production sector in the world, and it supplies nearly 50% of the global food fish supply. However, disease outbreaks have become a major problem in the fish farming industry. The beneficial contribution of probiotic bacteria to aquatic animals’ health has been widely described, and they have been widely used in aquaculture for disease control and growth promotion. However, the action of probiotic bacterial components and mechanisms underlying protection against pathogens afforded by probiotic bacteria remain poorly understood. In the present study, we pre-colonized zebrafish larvae (before hatching) with 17 potential probiotic bacterial strains and screened for those possessing anti-infective effects against Aeromonas veronii. We found that Lactobacillus casei BL23 significantly increased the survival of zebrafish larvae upon A. veronii infection. Using a germ-free (GF) zebrafish model and gut microbiota transplant experiment, we showed that L. casei BL23 per se has anti-infective effects in zebrafish larvae, which does not involve microbiota. Furthermore, we identified an exopolysaccharide-protein complex (EPSP) extracted from L. casei BL23 cells, which consisted of a 40–45 KD size protein and an exopolysaccharide composed of α-Rha, α-Glc, β-GlcNAc, and β-GalNAc. EPSP significantly increased the survival rate of GF zebrafish at a dose of 10–20 μg/ml after A. veronii infection (P < 0.01). In addition, the EPSP induced a higher expression of TLR1 and TLR2, and modulated the expression profile of pro-inflammatory and anti-inflammatory cytokines in zebrafish liver (ZFL) cells. Our data indicated that the anti-infective effect of EPSP from L. casei BL23 was mediated by enhancement of immune responses in zebrafish, which might involve the TLR1/TLR2 signal pathway
    corecore