12 research outputs found

    Digital Design Of The LHC Low Level rf: The Tuning System For The Superconducting Cavities

    Get PDF
    The low level RF systems for the LHC are based extensively on digital technology, not only to achieve the required performance and stability but also to provide full remote control and diagnostics facilities needed since most of the RF system is inaccessible during operation. The hardware is based on modular VME with a specially designed P2 backplane for timing distribution, fast data interchange and low noise linear power supplies. Extensive design re-use and the use of graphic FPGA design tools have streamlined the design process. A milestone was the test of the tuning system for the superconducting cavities. The tuning control module is based on a 2M gate FPGA with on-board DSP. Its design and functionality are described, including features such as automatic cavity measurements. Work is ongoing on completion of other modules and building up complete software and diagnostics facilities

    The New RF Control System for the CERN SPS Accelerator

    Get PDF
    The old SPS RF control system designed in 1972 has been replaced completely, i.e. both hardware and software. The new system has to control both RF equipment conceived during the last 23 years and future (modern) equipment. Using information analysis methods, we derived a model of an RF command and designed a data base accordingly (ORACLE®). Information from this data base is used for command generation and processing and also for archiving settings. The advantage is purely generic software, i.e. the same computer code is used for switching on an RF amplifier, as for setting a frequency synthesizer. New equipment is added very simply by entering new records in the data base. Additional features include a reservation scheme whereby a user can take private control of any piece of equipment, a reporting facility notifying the user of the simultaneous control activity by other users on RF equipment, and a capability scheme assigning a level of expertise to each user restricting action on the equipment

    Commissioning of the 400 MHz LHC RF System

    Get PDF
    The installation of the 400 MHz superconducting RF system in LHC is finished and commissioning is under way. The final RF system comprises four cryo-modules each with four cavities in the LHC tunnel straight section round IP4. Also underground in an adjacent cavern shielded from the main tunnel are the sixteen 300 kW klystron RF power sources with their high voltage bunkers, two Faraday cages containing RF feedback and beam control electronics, and racks containing all the slow controls. The system and the experience gained during commissioning will be described. In particular, results from conditioning the cavities and their movable main power couplers and the setting up of the low level RF feedbacks will be presented

    First Beam Commissioning of the 400 MHz LHC RF System

    Get PDF
    Hardware commissioning of the LHC RF system was successfully completed in time for first beams in LHC in September 2008. All cavities ware conditioned to nominal field, power systems tested and all Low level synchronization systems, cavity controllers and beam control electronics were tested and calibrated. Beam was successfully captured in ring 2, cavities phased, and a number of initial measurements made. These results are presented and tests and preparation for colliding beams in 2009 are outlined

    Hardware and Initial Beam Commissioning of the LHC RF Systems

    No full text
    Hardware commissioning of the LHC RF Systems, the ACS Superconducting RF systems, ADT Transverse Dampers and APWL Wideband Longitudinal Monitors, started in late 2007 and was completed in time for the first LHC beams in 2008. The RF inter-machine synchroni-sation systems were in place and operational for the LHC synchronization tests in August 2008. The very first beams through IP4 were observed on the RF monitors and beam 2 was captured on 11th September. Measurements with beam on the damper systems were also pos-sible, preparing the way for closing the damper loop with beam. Major milestones during commissioning the ACS and ADT systems and results obtained during first capture tests are presented. Preparatory work for acceleration and multi-bunch operation is described as are the beam tests foreseen for 2009
    corecore