539 research outputs found

    Spectral analysis of high-dimensional time series

    Get PDF
    A useful approach for analysing multiple time series is via characterising their spectral density matrix as the frequency domain analog of the covariance matrix. When the dimension of the time series is large compared to their length, regularisation based methods can overcome the curse of dimensionality, but the existing ones lack theoretical justification. This paper develops the first non-asymptotic result for characterising the difference between the sample and population versions of the spectral density matrix, allowing one to justify a range of high-dimensional models for analysing time series. As a concrete example, we apply this result to establish the convergence of the smoothed periodogram estimators and sparse estimators of the inverse of spectral density matrices, namely precision matrices. These results, novel in the frequency domain time series analysis, are corroborated by simulations and an analysis of the Google Flu Trends data

    Synthesis and characterization of aligned ZnO/BeO core/shell nanocable arrays on glass substrate

    Get PDF
    By sequential hydrothermal growth of ZnO nanowire arrays and thermal evaporation of Be, large-scale vertically aligned ZnO/BeO core/shell nanocable arrays on glass substrate have been successfully synthesized without further heat treatment. Detailed characterizations on the sample morphologies, compositions, and microstructures were systematically carried out, which results disclose the growth behaviors of the ZnO/BeO nanocable. Furthermore, incorporation of BeO shell onto ZnO core resulted in distinct improvement of optical properties of ZnO nanowire, i.e., significant enhancement of near band edge (NBE) emission as well as effective suppression of defects emission in ZnO. In particular, the NBE emission of nanocable sample shows a noticeable blue-shift compared with that of pristine ZnO nanowire, which characteristics most likely originate from Be alloying into ZnO. Consequently, the integration of ZnO and BeO into nanoscale heterostructure could bring up new opportunities in developing ZnO-based device for application in deep ultraviolet region

    Identification of biomarkers associated with immune scores in diabetic retinopathy

    Get PDF
    BackgroundDiabetic retinopathy (DR) causes irreversible visual impairment in diabetes mellitus (DM) patients. Immunity played a crucial role in DR. Nevertheless, the triggering mechanism of DR was not yet thorough enough. Herein, we aim to identify the immune-associated genes as biomarkers associated with immune scores that can distinguish early DR from DM without DR.MethodsIn this study, total RNA of peripheral blood mononuclear cell (PBMC) samples from 15 non-proliferative DR patients and 15 DM patients without DR were collected and the transcriptome sequencing data were extracted. Firstly, the target genes were obtained by intersecting the differentially expressed genes (DEGs), which were screened by “limma”, and the module genes (related to immune scores), which were screened by “WGCNA”. In order to screen for the crucial genes, three machine learning algorithms were implemented, and a receiver operating characteristic (ROC) curve was used to obtain the diagnostic genes. Moreover, the gene set enrichment analysis (GSEA) was performed to understand the function of diagnostic genes, and analysis of the proportions of immune cells and their association with diagnostic genes was performed to analyze the pathogenesis of DR. Furthermore, the regulatory network of TF–mRNA–miRNA was built to reveal the possible regulation of diagnostic genes. Finally, the quantitative real-time polymerase chain reaction (qRT-PCR) was performed to verify the mRNA level of diagnostic genes.ResultsA total of three immune-associated diagnostic genes, namely, FAM209B, POM121L1P, and PTGES, were obtained, and their expression was increased in PBMC samples of DR, and qRT-PCR results confirmed these results. Moreover, the functions of these genes were associated with immune response. The expression of POM121L1P and PTGES was significantly negatively associated with naive B cells, and the expression of FAM209B was significantly negatively associated with immature dendritic cells. Moreover, ESR1 could regulate both FAM209B and PTGES.ConclusionThis study identified three immune-associated diagnostic genes, FAM209B, POM121L1P, and PTGES, as biomarkers associated with immune scores in DR for the first time. This finding might proffer a novel perspective of the triggering mechanism of DR, and help to understand the role of immune-associated genes in the molecular mechanism of DR more deeply

    DeepGene: an advanced cancer type classifier based on deep learning and somatic point mutations

    Get PDF
    BACKGROUND: With the developments of DNA sequencing technology, large amounts of sequencing data have become available in recent years and provide unprecedented opportunities for advanced association studies between somatic point mutations and cancer types/subtypes, which may contribute to more accurate somatic point mutation based cancer classification (SMCC). However in existing SMCC methods, issues like high data sparsity, small volume of sample size, and the application of simple linear classifiers, are major obstacles in improving the classification performance. RESULTS: To address the obstacles in existing SMCC studies, we propose DeepGene, an advanced deep neural network (DNN) based classifier, that consists of three steps: firstly, the clustered gene filtering (CGF) concentrates the gene data by mutation occurrence frequency, filtering out the majority of irrelevant genes; secondly, the indexed sparsity reduction (ISR) converts the gene data into indexes of its non-zero elements, thereby significantly suppressing the impact of data sparsity; finally, the data after CGF and ISR is fed into a DNN classifier, which extracts high-level features for accurate classification. Experimental results on our curated TCGA-DeepGene dataset, which is a reformulated subset of the TCGA dataset containing 12 selected types of cancer, show that CGF, ISR and DNN all contribute in improving the overall classification performance. We further compare DeepGene with three widely adopted classifiers and demonstrate that DeepGene has at least 24% performance improvement in terms of testing accuracy. CONCLUSIONS: Based on deep learning and somatic point mutation data, we devise DeepGene, an advanced cancer type classifier, which addresses the obstacles in existing SMCC studies. Experiments indicate that DeepGene outperforms three widely adopted existing classifiers, which is mainly attributed to its deep learning module that is able to extract the high level features between combinatorial somatic point mutations and cancer types

    Common human cancer genes discovered by integrated gene-expression analysis

    Get PDF
    BACKGROUND: Microarray technology enables a standardized, objective assessment of oncological diagnosis and prognosis. However, such studies are typically specific to certain cancer types, and the results have limited use due to inadequate validation in large patient cohorts. Discovery of genes commonly regulated in cancer may have an important implication in understanding the common molecular mechanism of cancer. METHODS AND FINDINGS: We described an integrated gene-expression analysis of 2,186 samples from 39 studies to identify and validate a cancer type-independent gene signature that can identify cancer patients for a wide variety of human malignancies. The commonness of gene expression in 20 types of common cancer was assessed in 20 training datasets. The discriminative power of a signature defined by these common cancer genes was evaluated in the other 19 independent datasets including novel cancer types. QRT-PCR and tissue microarray were used to validate commonly regulated genes in multiple cancer types. We identified 187 genes dysregulated in nearly all cancerous tissue samples. The 187-gene signature can robustly predict cancer versus normal status for a wide variety of human malignancies with an overall accuracy of 92.6%. We further refined our signature to 28 genes confirmed by QRT-PCR. The refined signature still achieved 80% accuracy of classifying samples from mixed cancer types. This signature performs well in the prediction of novel cancer types that were not represented in training datasets. We also identified three biological pathways including glycolysis, cell cycle checkpoint II and plk3 pathways in which most genes are systematically up-regulated in many types of cancer. CONCLUSIONS: The identified signature has captured essential transcriptional features of neoplastic transformation and progression in general. These findings will help to elucidate the common molecular mechanism of cancer, and provide new insights into cancer diagnostics, prognostics and therapy

    Association between corticosteroid use and 28-day mortality in septic shock patients with gram-negative bacterial infection: a retrospective study

    Get PDF
    PurposeAlthough corticosteroids are recommended in the 2021 Surviving Sepsis Campaign (SSC) guidelines, evidence with respect to their effects on short-term mortality remains conflicting. We conducted this study to identify whether corticosteroids alter 28-day mortality in septic shock patients with gram-negative bacterial infection.Materials and methodsA total of 621 patients with septic shock and gram-negative bacterial culture results were identified from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. Propensity score matching (PSM) was performed, and Kaplan–Meier survival curve analyses with log-rank tests were used to determine the relationship between corticosteroid use and the risk of 28-day mortality. Subgroup analyses were conducted to assess whether the conclusions were stable and reliable.ResultsCorticosteroid administration was associated with increased 28-day mortality in septic shock patients with gram-negative bacterial infection (log-rank test P = 0.028). The incidence of Stage 2 or 3 AKI and the rate of hospital mortality were higher among patients who received corticosteroids. The incidence of Stage 2 or 3 AKI in the early period significantly mediated the relationship between corticosteroid use and 28-day mortality [P =0.046 for the average causal mediation effect (ACME)]. Interaction tests indicated that the effect of corticosteroid use was maintained in patients with a neutrophil-to-lymphocyte ratio (NLR) of <20 (P-value for interaction = 0.027).ConclusionSystemic corticosteroid use could be harmful in septic shock patients with gram-negative bacterial infection, especially in patients with relatively low NLR
    • 

    corecore