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Xi’an, China, 2Department of Spinal Surgery, No. 215 Hospital of Shaanxi Nuclear Industry,
Xianyang, China, 3Department of Neurosurgery, No. 215 Hospital of Shaanxi Nuclear Industry,
Xianyang, China
Background: Diabetic retinopathy (DR) causes irreversible visual impairment in

diabetes mellitus (DM) patients. Immunity played a crucial role in DR.

Nevertheless, the triggering mechanism of DR was not yet thorough enough.

Herein, we aim to identify the immune-associated genes as biomarkers associated

with immune scores that can distinguish early DR from DM without DR.

Methods: In this study, total RNA of peripheral blood mononuclear cell (PBMC)

samples from 15 non-proliferative DR patients and 15 DM patients without DR

were collected and the transcriptome sequencing data were extracted. Firstly,

the target genes were obtained by intersecting the differentially expressed genes

(DEGs), which were screened by “limma”, and the module genes (related to

immune scores), which were screened by “WGCNA”. In order to screen for the

crucial genes, three machine learning algorithms were implemented, and a

receiver operating characteristic (ROC) curve was used to obtain the

diagnostic genes. Moreover, the gene set enrichment analysis (GSEA) was

performed to understand the function of diagnostic genes, and analysis of the

proportions of immune cells and their association with diagnostic genes was

performed to analyze the pathogenesis of DR. Furthermore, the regulatory

network of TF–mRNA–miRNA was built to reveal the possible regulation of

diagnostic genes. Finally, the quantitative real-time polymerase chain reaction

(qRT-PCR) was performed to verify the mRNA level of diagnostic genes.

Results: A total of three immune-associated diagnostic genes, namely,

FAM209B, POM121L1P, and PTGES, were obtained, and their expression was

increased in PBMC samples of DR, and qRT-PCR results confirmed these results.

Moreover, the functions of these genes were associated with immune response.

The expression of POM121L1P and PTGES was significantly negatively associated

with naive B cells, and the expression of FAM209B was significantly negatively

associated with immature dendritic cells. Moreover, ESR1 could regulate both

FAM209B and PTGES.

Conclusion: This study identified three immune-associated diagnostic genes,

FAM209B, POM121L1P, and PTGES, as biomarkers associated with immune
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scores in DR for the first time. This findingmight proffer a novel perspective of the

triggering mechanism of DR, and help to understand the role of immune-

associated genes in the molecular mechanism of DR more deeply.
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1 Introduction

Among the ocular complications of diabetes mellitus (DM), the

incidence of diabetic retinopathy (DR) is high, reaching 34.6% in

the total population of DM patients. More seriously, the incidence

of DR-related blindness was 2.6% (1). As of 2020, there were

approximately 103 million DR patients around the world, and the

number of DR patients may increase to 160 million by 2045 (2). DR

causes irreversible visual impairment in DM patients, and is the

main cause of blindness in the adult working population worldwide

(2), which has brought heavy economic pressure (3). However, the

current medical methods can neither completely prevent nor cure

DR. It has been found that the emergence and progression of DR

were not only related to the duration of hyperglycemic state and the

level of blood glucose control (4), but also related to the different

genetic susceptibility of different individuals and abnormal immune

responses (5). Thus, it is crucial to continuously search for the

pathogenesis involved in DR, especially the triggering mechanism

of early DR from a new perspective and develop new prevention

and treatment methods accordingly.

Relevant studies have, to some extent, revealed that immunity

played a pivotal role during the occurrence and progression of DR (6,

7).Numerous immune cellsmay play potential roles inDR. In terms of

retinal innate immunity, it is found that microglia are activated at the

early stage of DR, and then release proinflammatory mediators and

attract more immunocytes (8). In terms of adaptive immunity, T

lymphocyte infiltration promotes the secretion of inflammatory

cytokines as well. Furthermore, cellular immune response and

phagocytic cell-dependent inflammatory effect are initiated, thus

participating in the pathological process of DR (9). It has also been

found that the densities of B lymphocytes significantly increased in the

fibrovascular membranes of active proliferative diabetic retinopathy

(PDR) patients (10). However, biomarkers associated with immune

scores that candistinguishearlyDRpatients fromDMpatientswithout

DR are still not thorough enough.

Owing to the widespread application of RNA-sequencing, it has

become more convenient to find new therapeutic targets for DR.

Therefore, the differentially expressed immune-associated genes

between the peripheral blood mononuclear cell (PBMC) samples

of DR and DM patients were screened for in-depth analyses. The

immune-associated diagnostic genes that could form the diagnostic

model of DR were confirmed through machine learning algorithms

and were then verified in subsequent experiments. Furthermore, the

functions of diagnostic genes, the proportions of immune cells, and
02
their association with diagnostic genes were analyzed to reveal the

possible pathogenesis mechanism of DR occurrence. Furthermore,

the up-/downstream regulatory mechanisms of diagnostic genes

were predicted to further reveal the potential regulation of these

immune-associated diagnostic genes in DR.
2 Materials and methods

2.1 Data collection, RNA extraction, and
library construction

In this study, 456 immune-related genes were obtained from the

ImmPort da tabase (ht tps : / /www. immport .org /home)

(Supplementary Table 1), and PBMC samples from the total of

non-proliferative DR (n = 15) and DMwithout DR (n = 15) patients

were acquired for RNA extraction. Patients with type 1 DM,

gestational DM, special type DM, hypertension, coronary heart

disease, chronic obstructive pulmonary disease, malignant tumor,

stroke, glaucoma, uveitis, and other retinal diseases are excluded.

This study was approved by the Second Affiliated Hospital of Xi’an

Jiaotong University ethical review committee (approval

number: 2023253).

Total RNA was isolated and purified using TRIzol reagent

(Invitrogen, Carlsbad, CA, USA), and the RNA amount and

purity of each sample were quantified using NanoDrop ND-1000

(NanoDrop, Wilmington, DE, USA). The poly(A) RNA was

fragmented into small pieces and reverse-transcribed to create the

cDNA. Next, the ligated products were amplified with polymerase

chain reaction (PCR). Last, we performed the 2 × 150- bp paired-

end sequencing (PE150) on an Illumina NovaseqTM 6000 (LC-Bio

Technology CO., Ltd., Hangzhou, China). Finally, the mRNA

sequencing data of 15 DR and 15 DM samples were obtained.

Based on it, the sequencing data were analyzed by “FastQC”

(version 0.11.9), and the low-quality data were filtered to remove

contamination and adaptor sequences and to obtain the clean data

finally. Furthermore, the clean data were aligned to the reference

genome (GRCh37) by “hisat2” (version2.2.1).
2.2 Identification of target genes of DR

The differentially expressed genes (DEGs) between DR (n = 15)

and DM (n = 15) samples were compared by “limma” R package
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(version 3.48.3) (|log2FC| > 1, p < 0.05) (11). The function analysis

of DEGs was conducted by the “clusterprofiler” R package (version

4.0.2) (adj. p < 0.05, count ≥ 1) (12). On the other hand, the immune

scores of all samples (n = 30) were calculated based on the

expression profiles of 456 immune-related genes from the

ImmPort database by the “GSVA” R package (version 1.44.5)

(13). The co-expression network was constructed by the

“WGCNA” R package (version 1.70-3), and the immune scores

were utilized as the trait to screen relevant module genes (14). Then,

the target genes were obtained by intersecting the module genes and

DEGs using “venn”.
2.3 Construction of the diagnostic
model of DR

Firstly, three methods, namely, the “Boruta” method (15), the

least absolute shrinkage and selection operator (LASSO) analysis

(16), and the support vector machine recursive feature elimination

(SVM-RFE) method, were utilized for screening the characteristic

genes, respectively. Then, the key genes were obtained by crossing

three sets of genes. Thirdly, the receiver operating characteristic

(ROC) curves of each key gene and the whole genes were drawn to

study the ability of key genes to distinguish DR from the DM

population. The genes which the area under the ROC curve (AUC)

value greater than 0.7 were defined as the diagnostic genes.

Moreover, the expressions of the diagnostic genes between DR

(n = 15) and DM (n = 15) were compared by the “rank-sum test”.

Based on it, the nomogram model with these diagnostic genes

was constructed by the “rms” R package (version 6.1-0). Then, the

calibration curve, ROC curve, and decision curve analysis (DCA)

were drawn to verify the validity of the nomogram.
2.4 The functions of diagnostic genes
and landscape of immune cells in
PBMC analyses

On the one hand, the gene set enrichment analysis (GSEA) was

utilized for studying the pathways of each diagnostic gene by the

“clusterProfiler” R package (version 4.4.4) (|NES| > 1, NOM p <

0.05, q < 0.25), respectively (11).

On the other hand, the proportions of immune cells between

DR (n = 15) and DM (n = 15) PBMC samples were calculated by the

“xCell” algorithm and compared by the “rank-sum test”. Moreover,

the correlations between diagnostic genes and differential immune

cells, as well as between diagnostic genes and marker genes of

differential immune cell, were further studied by “Spearman”.
2.5 Molecular mechanism analyses

The target transcription factors (TFs) and the target miRNAs of

diagnostic genes were predicted in Cistrome database (RP score >

0.3) and miRwalk database (energy ≤ −30), respectively. Then, the

TF–mRNA–miRNA network was constructed by “Cytoscape” (17).
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2.6 Validation of the expression of
diagnostic genes

Quantitative real-time PCR (qRT-PCR) was performed to

validate the expression of diagnostic genes in DR (n = 10) and

DM (n = 10) PBMC samples. Total RNA was extracted and the

qPCR reactions were performed using the SureScript First-strand

cDNA synthesis kit (Servicebio, Wuhan, China). The forward and

reverse primers were as shown in Supplementary Table 2. The

relative gene expression was presented by the comparative

CT method.
2.7 Statistical analysis

All analyses were conducted using R language. Experimental

data were statistically analyzed by GraphPad Prism (version 5)

software. Student’s t-test was used for the comparison of the DR and

DM groups. If not specified above, p < 0.05 was considered as

statistically significant.
3 Results

3.1 Data quality control and pre-processing

As shown in Supplementary Table 3, the base calling error of all

sequencing fragments was less than 1/1,000 (QC% > 30), the depth

was greater than 100× (total reads > 10 M), and the comparison

ratio of 29 samples was higher than 90%. These results showed that

the sequencing results could meet the needs of subsequent analyses.
3.2 A total of 15 immune-associated target
genes were obtained in DR

In order to screen the potential immune-associated target genes

in DR, the differentially expressed analysis was first employed for

comparing and analyzing gene expression patterns between DR and

DM PBMC samples. There were 278 DEGs (146 upregulated and

132 downregulated) between 15 DR and 15 DM samples

(Figure 1A; Figure S1A). In the perspective of function, these 278

DEGs were enriched to 209 Gene Ontology (GO) functions,

including Wnt signaling pathway and digestive tract

morphogenesis. It was worth noting that 11 target genes were

involved in the regulation of GTPase activity. Furthermore, these

genes were enriched to 13 Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways, including regulation of lipolysis in

adipocytes, Wnt, and Hedgehog signaling pathways (Figures S1B,

C, Supplementary Tables 4, 5).

On the other hand, the immune scores of all samples were

calculated on the basis of the expression profiles of 456 immune-

related genes from the ImmPort database, and the weighted gene

co-expression network analysis (WGCNA) was conducted to select

the key module genes associated with immune score. Sample

clustering analysis was first implemented and the results showed
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that there were no outlier samples (Figure S2A). Then, the optimal

soft threshold value was identified as five to ensure the scale-free

distribution of the network, and a total of 11 modules were obtained

based on the genes with the similar expression patterns (Figures 1B,

C, S2B). Among them, the blue module had a significantly positive

correlation with the immune score (R2 = 0.72, p = 7e-6), and the

green–yellow module had a significantly negative correlation with

the immune score (R2 = −0.71, p = 1e-6) (Figure 1D). Hence, 2,057

genes in these two modules with |GS| > 0.3 and |MM| > 0.4 were
Frontiers in Endocrinology 04
screened as key module genes related to immune scores for

subsequent analysis (Figures 1E, F).

Furthermore, by intersecting 2,057 immune score-related

module genes and 278 DEGs between DR and DM samples, a

total of 15 common genes, namely, CCDC144B, CFAP298-TCP10L,

Family with sequence similarity 209 member B (FAM209B),

GUSBP17, IGKJ3, KANTR, KRT1, MEF2C-AS2, OCIAD1-AS1,

POM121 membrane g lycoprote in- l ike 1 pseudogene

(POM121L1P), Prostaglandin E synthetase (PTGES), TRGV5P,
B

C

D

E

F

G

A

FIGURE 1

Identification of immune-associated differential expressed genes between the DR group and the DM group. (A) Volcano map of differentially
expressed genes between the DR group and the DM group. (B) Selection of soft threshold value. (C) Hierarchical clustering tree diagram of genes,
where genes clustered to the same branch are divided into the same module, and different colors represent different modules. (D) Heat map of the
relationship between gene modules and traits using immune scores as phenotypes. Scatter plots of module membership and gene significance for
key module genes, including (E) the blue module and (F) the green–yellow module. (G) Venn diagram of candidate differentially expressed genes.
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VWCE, WNT4, and ZNF876P, were obtained as significantly

differential target genes relevant to immune scores (Figure 1G).
3.3 Three diagnostic genes were used to
construct the diagnostic model of DR

Next, three machine learning methods, namely Boruta

(Figure 2A), LASSO (Figure 2B), and SVM-RFE (Figure 2C), were

utilized to screen the key diagnostic genes based on the target genes

as mentioned above, where seven candidate feature genes, namely,

CFAP298-TCP10L, FAM209B, GUSBP17, IGKJ3, POM121L1P,

PTGES, and TRGV5P, were screened by Boruta analysis; six

characteristic genes, namely, FAM209B, KRT1, POM121L1P,

PTGES, VWCE, and WNT4, were screened by LASSO analysis;

and all target genes were defined as the feature genes by SVM-RFE

analysis. Furthermore, three key genes shared by three diagnostic

models, namely, FAM209B, POM121L1P, and PTGES, were

obtained by crossing the above three sets of genes (Figure 2D).
Frontiers in Endocrinology 05
ROC analysis was used to determine the predictive performance

of three key genes as well as the gene-based diagnostic models to

distinguish DR from DM samples. It can be seen that the AUC

values of each key gene were greater than 0.7, and when all key

genes were considered as a whole, the AUC value was 0.8489

(Figure 2E), suggesting that FAM209B, POM121L1P, and PTGES

could be defined as good diagnostic genes for subsequent analyses.

Moreover, the expression profiles of all diagnostic genes between

DR and DM samples were extracted in the sequencing results, and it

can be seen that these genes are significantly highly expressed in the

DR group (Figure 2F).

Furthermore, the nomogram with three diagnostic genes was

constructed for clinical use. The calibration curve results showed

that the slope closed to 1, indicating that the nomogram had an

accurate ability for predicting the risk of DR (Figures 3A, B). The

AUC value of the nomogram was 0.849, and the results of the DCA

further suggested that the benefit rate of the nomogram model was

higher than each individual gene (Figures 3C, D). All of these results

indicated that the nomogram, by converting the expression of three
B

C D

E F

A

FIGURE 2

Identification of immune-associated diagnostic genes for DR. (A) Boruta analysis for identifying feature genes. The red, yellow, and green box charts
represent the rejected, tentative, and confirmed Z score attributes, respectively. We select green as the important feature gene. (B) Screening for
characteristic genes by LASSO regression analysis. (C) Screening for characteristic genes by SVM-RFE analysis. (D) Venn diagram of genes intersected by
results of Boruta, LASSO, and SNM analysis. (E) ROC curve of key genes. (F) Expression of key diagnostic genes in the DR group and the DM group. *p <
0.05, **p < 0.01.
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key genes into a total score, could be taken into consideration for

clinical use as well.
3.4 The functions of diagnostic genes were
associated with various immune responses

The GSEA results of three diagnostic genes revealed that the

biological process (BP) of regulation of inflammatory response,

acute inflammatory response, acute phase response, etc., were

highly enriched by FAM209B. It is worth noting that POM121L1P

and PTGES were related to many same functions, including

humoral immune response, immunoglobulin complex,

mitochondrial protein containing complex, and ATPase activity.

In addition, the functions of antigen binding and immunoglobulin

receptor binding were also highly enriched by POM121L1P

(Figures 4A–C).

For the KEGG enrichment results, the signaling pathways of

antigen processing and presentation and viral myocarditis were

highly enriched by FAM209B. POM121L1P and PTGES were

common to the pathways of Alzheimer’s disease, Huntington’s

disease, Parkinson’s disease, and oxidative phosphorylation

(Figures 5A–C).
Frontiers in Endocrinology 06
3.5 The correlations of diagnostic genes
and immune cells

After calculating the immune cell proportions of each PBMC

sample using xCell tools, a total of three immune cells, namely,

common myeloid progenitor cell (CMP), immature dendritic cell

(iDC), and naive B cell, were found to be significantly decreased in

the DR group (Figure 6A). Among them, POM121L1P and PTGES

were significantly negatively associated with naive B cell, and

FAM209B was significantly negatively associated with iDC (p <

0.05) (Figure 6B). In addition, there was a significantly strong

negative correlation between POM121L1P and ITGAX (the

marker gene of iDC) (p = 0.015, |cor| = 0.44) (Figure 7).
3.6 Molecular mechanism analyses of
diagnostic genes

For the potential regulatory network of diagnostic genes, the

TF–mRNA–miRNA network contained 59 miRNAs, 76 TFs, and 2

diagnostic genes. Among them, FAM209B had 18 targeted miRNAs

and PTGES had 48 targeted miRNAs. Notably, there were seven

common miRNAs (hsa-miR-671-5p, hsa-miR-939-5p, hsa-miR-
B

C D

A

FIGURE 3

Nomogram on the basis of three diagnostic genes was constructed for clinical utilize. (A) Nomogram. (B) Calibration curve of the nomogram.
(C) ROC curve of the nomogram. (D) DCA curve of the nomogram.
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6752-5p, hsa-miR-6858-5p, hsa-miR-6824-5p, hsa-miR-6765-5p,

and hsa-miR-6089) between FAM209B and PTGES. On the other

hand, FAM209B had two targeted TFs and PTGES had 75 targeted

TFs, and it was worth noting that the estrogen receptor 1 (ESR1)

could regulate both FAM209B and PTGES at the same

time (Figure 8).
3.7 Expression verification of immune-
associated diagnostic genes

The qRT-PCR results also showed that the expressions of the

three diagnostic genes were significantly higher in DR PBMC
Frontiers in Endocrinology 07
samples (n = 10) than in DM PBMC samples (n = 10), which

were in accordance with the sequencing results (p <

0.001) (Figure 9).
4 Discussion

Currently well-known risk factors such as age, disease duration,

and hemoglobin A1c are not effective in identifying patients with

early DR (18), and the differences between individuals might be

related to the interaction of multiple pathophysiological factors,

among which the influence of immune-mediated inflammatory

response is particularly critical (19), but until now, the immune-
B

C

A

FIGURE 4

Gene set enrichment analysis (GSEA) results (GO terms) of three diagnostic genes FAM209B (A), POM121L1P (B), and PTGES (C).
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related mechanisms contributing to the onset of DR have not been

thoroughly elucidated. DR often goes through a long false silent

phase before diagnosis (20), and frequent and regular fundus

examination is an effective method for detecting the occurrence of

DR. However, on the one hand, many DM patients cannot complete

fundus examination regularly before visual impairment occurs; on

the other hand, many DM patients are complicated with cataracts at

the same time, which hinders the clear imaging of the fundus (21).

Therefore, a new diagnostic method for early DR needs to be

explored. Compared with aqueous humor or vitreous fluid,

PBMCs are considered to be an ideal diagnostic material for early

DR due to their easy accessibility (22). Our study focused on finding

the immune-associated diagnostic genes as biomarkers of early DR
Frontiers in Endocrinology 08
and, thus, providing more valuable clues to the pathological

mechanism of DR occurrence.

Through our research, three diagnostic genes, namely,

FAM209B, POM121L1P, and PTGES, were firstly obtained, and

they all showed increased expression levels in DR individuals

compared to DM individuals. The discovery of a correlation

between POM121L1P and type 2 diabetes mellitus (T2DM) has

been reported (23). PTGES is the terminal enzyme in the

biosynthetic process of prostaglandin E2 (PGE2); PTGES could

also respond to the stimulation brought by inflammation through a

method of catalyzing the conversion of prostaglandin endoperoxide

H2 (PGH2) to PGE2, and act as a core regulator in inflammation

response (24), fever (25), and pain (26, 27). In addition, PTGES has
B

C

A

FIGURE 5

GSEA results (KEGG terms) of three diagnostic genes FAM209B (A), POM121L1P (B), and PTGES (C).
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also been found to be associated with T2DM. A literature reported

that the characteristics of b-cell were better, the aging degree of b-
cell was less, the insulin secretion in response to glucose was

enhanced, and the glucose steady state was improved in systemic

microsomal PTGES-2-deficient mice fed a fat-rich diet or bred with

db/db mice, a hereditary model of T2DM. Furthermore, they

concluded that microsomal PTGES-2 promotes aging of b-cells
and their hypofunction via the PGE/EP3/NR4A1 axis, and drug

blocking of microsomal PTGES-2 might have a therapeutic effect on

aging-induced beta cellular hypofunction and diabetes (28). Also,

PTGES has also been reported to play a vital role in other

autoimmune diseases, including ulcerative colitis (29) and
Frontiers in Endocrinology 09
rheumatoid arthritis (30). In addition, the diagnostic model

constructed by these three key genes has a good diagnostic

efficiency and could distinguish DR from DM effectively, which

means that it is possible for us to evaluate and predict the

occurrence of DR based on the expression differences of key

genes in different diabetic individuals or the changes in the

expression of crucial genes at different periods in the same

diabetic individual, so that we could hopefully take intervention

measures in the early preclinical stage of DR instead of just waiting

for the occurrence of DR before taking measures.

Through GSEA, we found that these three diagnostic genes all

have correlation with immune-related response. FAM209B
B

A

FIGURE 6

The analysis of circulating immune cells in PBMCs of the DR group and the DM group. (A) Differences in the proportion of circulating immune cells
in PBMCs between the DR group and the DM group. (B) Scatter chart of the correlation between key genes and differential immune cells. *p < 0.05;
ns, no significance.
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significantly enriched the functions of regulation of inflammatory

response, the pathway of antigen processing, and presentation,

while the humoral immune response, immunoglobulin complex,

and the pathways of some autoimmune diseases like Alzheimer’s

disease and Parkinson’s disease were highly enriched by

POM121L1P and PTGES. A literature reported that the

microsomal PTGES-1/PGE axis promotes the process of wound

repair by gathering regulatory T cells (31). Another study revealed

that targeting the IL-17/microsomal PGES-1/PPAR-g axis might be

a possible approach for the treatment of inflammatory and

immune-mediated diseases (32). In addition, it has been found
Frontiers in Endocrinology 10
that microsomal PTGES-1 in cells derived from bone marrow might

play a crucial role in contact hypersensitivity. PTGES-1-derived

PGE might promote acquired cutaneous immune responses (33).

Other research has shown that exogenous nicotinamide adenine

dinucleotide promotes the expression of PTGES and maintains the

integrity of the mucus layer that modulates immune response

appropriately and therefore participates in the pathological

process of inflammatory bowel diseases (34). However, up to

now, there was no definitive literature reporting the role of these

three diagnostic genes in ocular immune-related inflammatory

reactions. Therefore, our study explored the diagnostic value of
FIGURE 7

Scatter chart of the correlation between key genes and differential cell marker genes.
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these three immune-associated genes in distinguishing DR from

DM for the first time, as well as their potential key roles in DR

triggering mechanisms. According to our findings, there may be a

close relationship between these three key diagnostic genes. The

single-gene GSEA results of three diagnostic genes are all enriched

in immune-related items such as immune regulation, antigen

processing, and presentation. Therefore, from the perspective of

function or pathway relationships, these diagnostic genes may

participate in similar biological pathways. Secondly, from the

point of view of the complementary relationship between the

three genes in diagnosis, the nomogram constructed by

integrating the expression of key genes and the good prediction

performance of the three genes as a whole model proved that the

three genes played a complementary role in DR diagnosis. However,

owing to the lack of direct correlation research literature on these

genes by now, further experiments and functional analysis are

needed by collecting more clinical samples in the future to gain a

deeper understanding of the functions, regulation, and interactions

between these diagnostic genes in DR.

Through KEGG, the signaling pathway of antigen processing

and presentation enriched by FAM209B and the pathway of

oxidative phosphorylation co-enriched by POM121L1P and

PTGES have attracted our attention. These deregulated biological
Frontiers in Endocrinology 11
processes and pathways are directly or indirectly related to the

pathological process and symptoms of DR. The role of

inflammatory response in the pathogenesis of DR has been widely

confirmed, and retinal inflammation can be detected from early DR

to late DR that endangers vision. Abnormal activation of

inflammatory response triggers a series of retinal cellular

dysfunction and tissue damage (35, 36). The main mechanisms of

inflammatory response in DR are leukocyte stasis, infiltration of

innate immune cells (such as macrophages and neutrophils) and

adaptive immune cells (such as B and T cells), activation of

microglia, complement coagulation cascade, upregulation of

cytokines, and increment of chemokine composition (37–39).

Subsequently, leukostasis can cause retinal microvascular

occlusion, and the increased pro-inflammatory mediators,

adhesion molecules, chemokines, and growth factors can cause

damage to the blood–retinal barrier, and subsequently, capillary

leakage can cause macular edema and retinal pathological

neovascularization, which lead to decreased vision (40).

Meanwhile, the activation of retinal inflammation in DR is

inseparable from the antigen processing and presentation

pathway in the immune process. In the state of diabetes,

extracellular advanced-glycation end products mediate strong

pro-inflammatory effects by binding to and activating their
FIGURE 8

The TF-miRNA-mRNA network of key genes.
B CA

FIGURE 9

Differential mRNA expression of three immune-associated diagnostic genes FAM209B (A), PTGES (B), and POM121L1P (C) between the DR group and
the DM group by qRT-PCR. ***p < 0.001, ****p < 0.0001.
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receptor, as well as Toll-like receptor 4 on the professional antigen-

presenting cells (including monocytes, dendritic cells, and

macrophages) (41) expressing major histocompatibility complex

class II (MHC II) molecule (42, 43). In addition, a study on diabetes

Ob/Ob mice also found that the change of MHCII antigen

presentation may promote the occurrence of complications of

type 2 diabetes (44). The disorder of humoral immune response

is also involved in the occurrence and development of DR. Recently,

it has been shown that levels of circulating oxidized low-density

lipoprotein immune complexes (ox-LDL-ICs) predict the

development of DR. Moreover, ox-LDL-ICs exist in the retina of

people with type 2 diabetes and is proportional to the severity of

DR, which may be related to the cytotoxicity of ox-LDL-ICs toward

retinal pericytes (45). A previous study found that the use of

regulatory peptide imunofan can normalize humoral immunity

and correct immune dysfunction in patients with type 2 diabetic

foot syndrome (46). Oxidative phosphorylation (OxPhos) is

involved in the maintenance of glucose homeostasis (47). Chronic

hyperglycemia leads to a decrease in OxPhos, followed by excessive

production of reactive oxygen species (ROS) (48, 49), resulting in

oxidative stress-induced damage to the structure and function of

retinal microvasculature, including the thickening of capillary

basement membrane, the breakdown of blood–retinal barrier, and

the formation of acellular and occluded capillaries. Also, both

inflammation and angiogenesis are dramatically augmented by

hyperglycemia-mediated oxidative stress (50).

As we know, choroidal vessels were more susceptible to changes

in immune components of peripheral blood than retina (51).

Exposure of RPE/choroid to circulating immune media could

affect retinal immune homeostasis (52). A recent work has shown

that the fibrovascular membrane in PDR has a different immune

landscape compared with that in normal retina (53). Our study

firstly compared the differences in proportions of various types of

immune cells between early diabetic retinopathy (non-proliferative

DR) and DM patients without DR, which is more helpful for

understanding the possible triggering mechanism of DR. We

found that the proportion of CMPs, iDCs, and naive B cells in

the DR group were reduced markedly compared with the DM

group, and these three types of immune cells all contributed to the

mediation of immune tolerance processes and have been proven to

play crucial roles in the pathogenesis of other kinds of autoimmune

diseases associated with immune tolerance disorder. CMPs were

precursors of monocytes and could differentiate into myeloid cells,

including dendritic cells (DCs), macrophages, and granulocyte

lineage cells. DCs were the mightiest professional antigen-

presenting cells in the body. Among the DCs, iDCs were the

main force mediating the process of immune tolerance. The

involvement of immune tolerance disorders mediated by iDC

reduction in the pathogenesis of systemic autoimmune diseases

such as systemic lupus erythematosus, multiple sclerosis, and

autoimmune encephalitis has been extensively studied (54), while

the research of iDCs in eye diseases mainly focuses on uveitis (55).

Naive B cells were developed from immature B cells through

mechanisms such as clonal clearance, receptor editing, and

inactivation in the bone marrow to form immune tolerance to the

body’s own antigens. Therefore, to some extent, naive B cells also
Frontiers in Endocrinology 12
reflect the degree of immune tolerance and participate in the

immune regulation process. The type 1 DM-derived immune

system included reduced proportion of naive B cells compared

with healthy controls of personalized immune mice, and similar

changes have been observed in systemic lupus erythematosus

individuals (56). We speculate that when iDCs and naive B cells

are reduced, the immune tolerance at the local choroid–retinal

interface is out of balance, and the original immune homeostasis

cannot be maintained, thus activating and amplifying the immune

inflammatory reaction at the choroid–retinal interface, causing

damage to the outer blood–retinal barrier, and then causing

excessive autoimmune inflammatory reaction in the retina, thus

triggering early DR. However, this hypothesis still needs to be

verified by future multi-dimensional experiments.

Furthermore, we integrated 76 TFs, 59 miRNAs, and 2

diagnostic genes to build the TF–mRNA–miRNA regulatory

network. From the TF–mRNA–miRNA regulatory network we

predicted, it can be seen that there are some common

transcription factors (such as ESR1) and miRNAs (including hsa-

miR-671-5p, hsa-miR-939-5p, hsa-miR-6752-5p, hsa-miR-6858-

5p, hsa-miR-6824-5p, hsa-miR-6765-5p, and hsa-miR-6089)

between FAM209B and PTGES. Among them, ESR1 was a hub

gene in many autoimmune diseases (57), including type 1 diabetes

(58), systemic lupus erythematosus (59), and rheumatoid arthritis

(60). ESR1 was widely expressed in thymocytes, T cells, B

lymphocytes, etc., which serve roles in the functioning of the

immune system and reducing inflammation. Recent research has

found that Runx1 indirectly led to reduced expression of trefoil

factor family 1 by the CBF-b/ESR1 axis in mouse retinal

microvascular endothelial cells treated with high glucose, which

was involved in the occurrence of DR (61). Among the common

miRNAs, miR-671-5p has been discovered to be involved in

inflammatory and immunomodulation (62) processes in many

kinds of diseases, such as periodontitis (63), pulmonary

inflammatory injury (64), Parkinson’s disease (65), and

atherosclerosis (66). It has been found that miR-939-5p has an

anti-inflammatory effect in human aortic endothelial cells (67), and

it also modified the apoptosis of endothelial and myocardial cells

induced by inflammatory cytokines (68). MiR-6752-5p was

associated with cerebrovascular disorder (69). MiR-6858-5p was

associated with growth, invasion, and angiogenesis of glioblastoma

multiforme (70), and miR-6765-5p was associated with wound

healing (71). As for miR-6089, it has been reported to have

correlation with the risk of ischemic stroke (72) and rheumatoid

arthritis (73). Although these core TFs and miRNAs in this

regulatory network have not been reported in T2DM or DR, most

of them have been reported to play crucial inflammatory and

immunomodulatory roles in other chronic inflammation-related

diseases, which has certain similarity and correlation with

our findings.

Despite the application of comprehensive bioinformatics

analysis methods and RNA expression validation of key genes,

our research still has certain limitations. First of all, in DM patients,

the expression pattern of immune cell proportions in different

tissues and organs may be different. Although it is difficult to

obtain retinal tissue samples from DM patients with or without
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DR, further studying it will be worth the effort, and the difference in

the expression of immune-related biomarkers targeting different

immune cells needs to be further verified by combining single-cell

atlas and immune cell-related experiments in the future; in

addition, other large sample size datasets with consistent sample

types and degree of disease progression need to be analyzed to

validate the gene diagnostic performance and expression trends we

observed in the self-sequencing data. Secondly, the design type of

this study belongs to a case–control study, and it is necessary to

conduct prospective cohort studies with a large sample size in the

future to accurately verify the causal relationship between the

expression trends of key genes observed in our self-sequencing

data and the progression of the disease, as well as its clinical

practical diagnostic efficacy. Thirdly, further in vivo and in vitro

experiments are needed in the future to verify the specific

pathological and molecular mechanisms of these three immune-

associated diagnostic genes in the occurrence of DR.

In conclusion, this study identified three immune-associated

diagnostic genes, namely, FAM209B, POM121L1P, and PTGES, as

biomarkers associated with immune scores in DR for the first time,

and the changes in immune cell landscape in PBMCs may be related

to these biomarkers. This finding might be a catalyst for the

exploration of the DR triggering mechanism in a T2DM

population, and might help to understand the role of immune-

associated genes in the molecular mechanism of DR occurrence

more deeply.
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