21 research outputs found

    Comparison between electrochemistry/mass spectrometry and cytochrome P450 catalyzed oxidation reactions

    No full text
    The extent to which electrochemistry on-line with electrospray mass spectrometry can be used to mimic cytochrome P450 catalyzed oxidations has been investigated. Comparisons on the mechanistic level have been made for most reactions in an effort to explain why certain reactions can, and some cannot, be mimicked by electrochemical oxidations. The EC/MS/MS system used successfully mimics in cases where the P450 catalyzed reactions are supposed to proceed via a mechanism initiated by a one-electron oxidation, such as N-dealkylation, S-oxidation, P-oxidation, alcohol oxidation and dehydrogenation. The P450 catalyzed reactions initiated via direct hydrogen atom abstraction, such as O-dealkylation and hydroxylation of unsubstituted aromatic rings, generally had a too high oxidation potential to be electrochemically oxidized below the oxidation potential limit of water, and were not mimicked by the EC/MS/MS system. Even though the EC/MS/MS system is not able to mimic all oxidations performed by cytochrome P450, valuable information can be obtained concerning the sensitivity of the substrate towards oxidation and in which position of the molecule oxidations are likely to take place. For small-scale electrochemical synthesis of metabolites, starting from the drug, the EC/MS/MS system should be very useful for quick optimization of the electrochemical conditions. The simplicity of the system, and the ease and speed with which it can be applied to a large number of compounds, make it a useful tool in drug metabolism research. Copyright (C) 2003 John Wiley Sons, Ltd

    The metabolic fate of fenclozic acid in chimeric mice with a humanized liver

    No full text
    The metabolic fate of the human hepatotoxin fenclozic acid ([2-(4-chlorophenyl)-1,3-thiazol-4-yl]acetic acid) (Myalex) was studied in normal and bile-cannulated chimeric mice with a humanized liver, following oral administration of 10 mg/kg. This in vivo animal model was investigated to assess its utility to study “human” metabolism of fenclozic acid, and in particular to explore the formation of electrophilic reactive metabolites (RMs), potentially unique to humans. Metabolism was extensive, particularly involving the carboxylic acid-containing side chain. Metabolism resulted in the formation of a large number of metabolites and involved biotransformation via both oxidative and conjugative routes. The oxidative metabolites detected included a variety of hydroxylations as well as cysteinyl-, N-acetylcysteinyl-, and cysteinylglycine metabolites. The latter resulted from the formation of glutathione adducts/conjugates providing evidence for the production of RMs. The production of other classes of RMs included acyl-glucuronides, and the biosynthesis of acyl carnitine, taurine, glutamine, and glycine conjugates via potentially reactive acyl-CoA intermediates was also demonstrated. A number of unique “human” metabolites, e.g., those providing evidence for side-chain extension, were detected in the plasma and excreta of the chimeric liver-humanized mice that were not previously characterised in, e.g., the excreta of rat and C57BL/6 mice. The different pattern of metabolism seen in these chimeric mice with a humanized liver compared to the conventional rodents may offer clues to the factors that contributed to the drug-induced liver injury seen in humans
    corecore