358 research outputs found

    Verification of a variational source condition for acoustic inverse medium scattering problems

    Full text link
    This paper is concerned with the classical inverse scattering problem to recover the refractive index of a medium given near or far field measurements of scattered time-harmonic acoustic waves. It contains the first rigorous proof of (logarithmic) rates of convergence for Tikhonov regularization under Sobolev smoothness assumptions for the refractive index. This is achieved by combining two lines of research, conditional stability estimates via geometrical optics solutions and variational regularization theory

    Characterizations of variational source conditions, converse results, and maxisets of spectral regularization methods

    Full text link
    We describe a general strategy for the verification of variational source condition by formulating two sufficient criteria describing the smoothness of the solution and the degree of ill-posedness of the forward operator in terms of a family of subspaces. For linear deterministic inverse problems we show that variational source conditions are necessary and sufficient for convergence rates slower than the square root of the noise level. A similar result is shown for linear inverse problems with white noise. If the forward operator can be written in terms of the functional calculus of a Laplace-Beltrami operator, variational source conditions can be characterized by Besov spaces. This is discussed for a number of prominent inverse problems

    Low-velocity collision behaviour of clusters composed of sub-mm sized dust aggregates

    Full text link
    The experiments presented aim to measure the outcome of collisions between sub-mm sized protoplanetary dust aggregate analogues. We also observed the clusters formed from these aggregates and their collision behaviour. The experiments were performed at the drop tower in Bremen. The protoplanetary dust analogue materials were micrometre-sized monodisperse and polydisperse SiO2_2 particles prepared into aggregates with sizes between 120~μ\mum and 250~μ\mum. One of the dust samples contained aggregates that were previously compacted through repeated bouncing. During three flights of 9~s of microgravity each, individual collisions between aggregates and the formation of clusters of up to a few millimetres in size were observed. In addition, the collisions of clusters with the experiment cell walls leading to compaction or fragmentation were recorded. We observed collisions amongst dust aggregates and collisions between dust clusters and the cell aluminium walls at speeds ranging from about 0.1 cm/s to 20 cm/s. The velocities at which sticking occurred ranged from 0.18 to 5.0 cm/s for aggregates composed of monodisperse dust, with an average value of 2.1 cm/s for reduced masses ranging from 1.2x10-6 to 1.8x10-3 g with an average value of 2.2x10-4 g. From the restructuring and fragmentation of clusters composed of dust aggregates colliding with the aluminium cell walls, we derived a collision recipe for dust aggregates (\sim100 μ\mum) following the model of Dominik \& Thielens (1997) developed for microscopic particles. We measured a critical rolling energy of 1.8x10-13 J and a critical breaking energy of 3.5x10-13 J for 100 μ\mum-sized non-compacted aggregates.Comment: 12 pages, 13 figure

    Submillimetre-sized dust aggregate collision and growth properties

    Full text link
    The collisional and sticking properties of sub-mm-sized aggregates composed of protoplanetary dust analogue material are measured, including the statistical threshold velocity between sticking and bouncing, their surface energy and tensile strength within aggregate clusters. We performed an experiment on the REXUS 12 suborbital rocket. The protoplanetary dust analogue materials were micrometre-sized monodisperse and polydisperse SiO2 particles prepared into aggregates with sizes around 120 μ\mum and 330 μ\mum, respectively and volume filling factors around 0.37. During the experimental run of 150 s under reduced gravity conditions, the sticking of aggregates and the formation and fragmentation of clusters of up to a few millimetres in size was observed. The sticking probability of the sub-mm-sized dust aggregates could be derived for velocities decreasing from 22 to 3 cm/s. The transition from bouncing to sticking collisions happened at 12.7 cm/s for the smaller aggregates composed of monodisperse particles and at 11.5 and 11.7 cm/s for the larger aggregates composed of mono- and polydisperse dust particles, respectively. Using the pull-off force of sub-mm-sized dust aggregates from the clusters, the surface energy of the aggregates composed of monodisperse dust was derived to be 1.6x10-5 J/m2, which can be scaled down to 1.7x10-2 J/m2 for the micrometre-sized monomer particles and is in good agreement with previous measurements for silica particles. The tensile strengths of these aggregates within the clusters were derived to be 1.9 Pa and 1.6 Pa for the small and large dust aggregates, respectively. These values are in good agreement with recent tensile strength measurements for mm-sized silica aggregates. Using our data on the sticking-bouncing threshold, estimates of the maximum aggregate size can be given. For a minimum mass solar nebula model, aggregates can reach sizes of 1 cm.Comment: 21 pages (incl. 6 pages of appendix), 23 figure

    The Suborbital Particle Aggregation and Collision Experiment (SPACE): Studying the Collision Behavior of Submillimeter-Sized Dust Aggregates on the Suborbital Rocket Flight REXUS 12

    Full text link
    The Suborbital Particle Aggregation and Collision Experiment (SPACE) is a novel approach to study the collision properties of submillimeter-sized, highly porous dust aggregates. The experiment was designed, built and carried out to increase our knowledge about the processes dominating the first phase of planet formation. During this phase, the growth of planetary precursors occurs by agglomeration of micrometer-sized dust grains into aggregates of at least millimeters to centimeters in size. However, the formation of larger bodies from the so-formed building blocks is not yet fully understood. Recent numerical models on dust growth lack a particular support by experimental studies in the size range of submillimeters, because these particles are predicted to collide at very gentle relative velocities of below 1 cm/s that can only be achieved in a reduced-gravity environment. The SPACE experiment investigates the collision behavior of an ensemble of silicate-dust aggregates inside several evacuated glass containers which are being agitated by a shaker to induce the desired collisions at chosen velocities. The dust aggregates are being observed by a high-speed camera, allowing for the determination of the collision properties of the protoplanetary dust analog material. The data obtained from the suborbital flight with the REXUS (Rocket Experiments for University Students) 12 rocket will be directly implemented into a state-of-the-art dust growth and collision model

    Dust growth in protoplanetary disks - a comprehensive experimental/theoretical approach

    Full text link
    More than a decade of dedicated experimental work on the collisional physics of protoplanetary dust has brought us to a point at which the growth of dust aggregates can - for the first time - be self-consistently and reliably modelled. In this article, the emergent collision model for protoplanetery dust aggregates (G\"uttler et al. 2010) as well as the numerical model for the evolution of dust aggregates in protoplanetary disks (Zsom et al. 2010) are reviewed. It turns out that, after a brief period of rapid collisional growth of fluffy dust aggregates to sizes of a few centimeters, the protoplanetary dust particles are subject to bouncing collisions, in which their porosity is considerably decreased. The model results also show that low-velocity fragmentation can reduce the final mass of the dust aggregates but that it does not trigger a new growth mode as discussed previously. According to the current stage of our model, the direct formation of kilometer-sized planetesimals by collisional sticking seems impossible so that collective effects, such as the streaming instability and the gravitational instability in dust-enhanced regions of the protoplanetary disk, are the best candidates for the processes leading to planetesimals.Comment: to appear in Research in Astronomy and Astrophysics (RAA

    The Physics of Protoplanetesimal Dust Agglomerates. III. Compaction in Multiple Collisions

    Full text link
    To study the evolution of protoplanetary dust aggregates, we performed experiments with up to 2600 collisions between single, highly-porous dust aggregates and a solid plate. The dust aggregates consisted of spherical SiO2_2 grains with 1.5μ\mum diameter and had an initial volume filling factor (the volume fraction of material) of ϕ0=0.15\phi_0=0.15. The aggregates were put onto a vibrating baseplate and, thus, performed multiple collisions with the plate at a mean velocity of 0.2 m s1^{-1}. The dust aggregates were observed by a high-speed camera to measure their size which apparently decreased over time as a measure for their compaction. After 1000 collisions the volume filling factor was increased by a factor of two, while after 2000\sim2000 collisions it converged to an equilibrium of ϕ0.36\phi\approx0.36. In few experiments the aggregate fragmented, although the collision velocity was well below the canonical fragmentation threshold of 1\sim1 m s1^{-1}. The compaction of the aggregate has an influence on the surface-to-mass ratio and thereby the dynamic behavior and relative velocities of dust aggregates in the protoplanetary nebula. Moreover, macroscopic material parameters, namely the tensile strength, shear strength, and compressive strength, are altered by the compaction of the aggregates, which has an influence on their further collisional behavior. The occurrence of fragmentation requires a reassessment of the fragmentation threshold velocity.Comment: accepted by the Astrophysical Journa

    Breaking through: The effects of a velocity distribution on barriers to dust growth

    Full text link
    It is unknown how far dust growth can proceed by coagulation. Obstacles to collisional growth are the fragmentation and bouncing barriers. However, in all previous simulations of the dust-size evolution in protoplanetary disks, only the mean collision velocity has been considered, neglecting that a small but possibly important fraction of the collisions will occur at both much lower and higher velocities. We study the effect of the probability distribution of impact velocities on the collisional dust growth barriers. Assuming a Maxwellian velocity distribution for colliding particles to determine the fraction of sticking, bouncing, and fragmentation, we implement this in a dust-size evolution code. We also calculate the probability of growing through the barriers and the growth timescale in these regimes. We find that the collisional growth barriers are not as sharp as previously thought. With the existence of low-velocity collisions, a small fraction of the particles manage to grow to masses orders of magnitude above the main population. A particle velocity distribution softens the fragmentation barrier and removes the bouncing barrier. It broadens the size distribution in a natural way, allowing the largest particles to become the first seeds that initiate sweep-up growth towards planetesimal sizes.Comment: 4 pages, 3 figures. Accepted for publication as a Letter in Astronomy and Astrophysic
    corecore