40 research outputs found

    Pathogen and Circadian Controlled 1 (PCC1) Protein Is Anchored to the Plasma Membrane and Interacts with Subunit 5 of COP9 Signalosome in Arabidopsis

    Get PDF
    The Pathogen and Circadian Controlled 1 (PCC1) gene, previously identified and further characterized as involved in defense to pathogens and stress-induced flowering, codes for an 81-amino acid protein with a cysteine-rich C-terminal domain. This domain is essential for homodimerization and anchoring to the plasma membrane. Transgenic plants with the ß- glucuronidase (GUS) reporter gene under the control of 1.1 kb promoter sequence of PCC1 gene display a dual pattern of expression. At early post-germination, PCC1 is expressed only in the root vasculature and in the stomata guard cells of cotyledons. During the transition from vegetative to reproductive development, PCC1 is strongly expressed in the vascular tissue of petioles and basal part of the leaf, and it further spreads to the whole limb in fully expanded leaves. This developmental pattern of expression together with the late flowering phenotype of long-day grown RNA interference (iPCC1) plants with reduced PCC1 expression pointed to a regulatory role of PCC1 in the photoperiod-dependent flowering pathway. iPCC1 plants are defective in light perception and signaling but are not impaired in the function of the core CO-FT module of the photoperiod-dependent pathway. The regulatory effect exerted by PCC1 on the transition to flowering as well as on other reported phenotypes might be explained by a mechanism involving the interaction with the subunit 5 of the COP9 signalosome (CSN).This work was funded by grants BIO2008-00839, BIO2011-27526 and CSD2007-0057 from Ministerio de Ciencia e Innovacion of Spain to J.L. A fellowship/contract of the FPU program of the Ministerio de Educacion y Ciencia (Spain) funded R.M. work. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Mir Moreno, R.; Leon Ramos, J. (2014). Pathogen and Circadian Controlled 1 (PCC1) Protein Is Anchored to the Plasma Membrane and Interacts with Subunit 5 of COP9 Signalosome in Arabidopsis. PLoS ONE. 1(9):1-14. https://doi.org/10.1371/journal.pone.0087216S11419Sauerbrunn, N., & Schlaich, N. L. (2004). PCC1 : a merging point for pathogen defence and circadian signalling in Arabidopsis. Planta, 218(4), 552-561. doi:10.1007/s00425-003-1143-zSEGARRA, S., MIR, R., MARTÍNEZ, C., & LEÓN, J. (2009). Genome-wide analyses of the transcriptomes of salicylic acid-deficient versus wild-type plants uncover Pathogen and Circadian Controlled 1 (PCC1) as a regulator of flowering time in Arabidopsis. Plant, Cell & Environment, 33(1), 11-22. doi:10.1111/j.1365-3040.2009.02045.xVenancio, T. M., & Aravind, L. (2009). CYSTM, a novel cysteine-rich transmembrane module with a role in stress tolerance across eukaryotes. Bioinformatics, 26(2), 149-152. doi:10.1093/bioinformatics/btp647Lau, O. S., & Deng, X. W. (2010). Plant hormone signaling lightens up: integrators of light and hormones. Current Opinion in Plant Biology, 13(5), 571-577. doi:10.1016/j.pbi.2010.07.001Seo, M., Nambara, E., Choi, G., & Yamaguchi, S. (2008). Interaction of light and hormone signals in germinating seeds. Plant Molecular Biology, 69(4), 463-472. doi:10.1007/s11103-008-9429-yDe Lucas, M., Davière, J.-M., Rodríguez-Falcón, M., Pontin, M., Iglesias-Pedraz, J. M., Lorrain, S., … Prat, S. (2008). A molecular framework for light and gibberellin control of cell elongation. Nature, 451(7177), 480-484. doi:10.1038/nature06520Feng, S., Martinez, C., Gusmaroli, G., Wang, Y., Zhou, J., Wang, F., … Deng, X. W. (2008). Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature, 451(7177), 475-479. doi:10.1038/nature06448Mutasa-Gottgens, E., & Hedden, P. (2009). Gibberellin as a factor in floral regulatory networks. Journal of Experimental Botany, 60(7), 1979-1989. doi:10.1093/jxb/erp040Bastian, R., Dawe, A., Meier, S., Ludidi, N., Bajic, V. B., & Gehring, C. (2010). Gibberellic acid and cGMP-dependent transcriptional regulation inArabidopsis thaliana. Plant Signaling & Behavior, 5(3), 224-232. doi:10.4161/psb.5.3.10718Yu, S., Galvão, V. C., Zhang, Y.-C., Horrer, D., Zhang, T.-Q., Hao, Y.-H., … Wang, J.-W. (2012). Gibberellin Regulates the Arabidopsis Floral Transition through miR156-Targeted SQUAMOSA PROMOTER BINDING–LIKE Transcription Factors. The Plant Cell, 24(8), 3320-3332. doi:10.1105/tpc.112.101014Arc, E., Galland, M., Cueff, G., Godin, B., Lounifi, I., Job, D., & Rajjou, L. (2011). Reboot the system thanks to protein post-translational modifications and proteome diversity: How quiescent seeds restart their metabolism to prepare seedling establishment. PROTEOMICS, 11(9), 1606-1618. doi:10.1002/pmic.201000641Dill, A., Thomas, S. G., Hu, J., Steber, C. M., & Sun, T. (2004). The Arabidopsis F-Box Protein SLEEPY1 Targets Gibberellin Signaling Repressors for Gibberellin-Induced Degradation. The Plant Cell, 16(6), 1392-1405. doi:10.1105/tpc.020958Wang, F., & Deng, X. W. (2011). Plant ubiquitin-proteasome pathway and its role in gibberellin signaling. Cell Research, 21(9), 1286-1294. doi:10.1038/cr.2011.118Hotton, S. K., & Callis, J. (2008). Regulation of Cullin RING Ligases. Annual Review of Plant Biology, 59(1), 467-489. doi:10.1146/annurev.arplant.58.032806.104011Cope, G. A. (2002). Role of Predicted Metalloprotease Motif of Jab1/Csn5 in Cleavage of Nedd8 from Cul1. Science, 298(5593), 608-611. doi:10.1126/science.1075901Gusmaroli, G., Figueroa, P., Serino, G., & Deng, X. W. (2007). Role of the MPN Subunits in COP9 Signalosome Assembly and Activity, and Their Regulatory Interaction with Arabidopsis Cullin3-Based E3 Ligases. The Plant Cell, 19(2), 564-581. doi:10.1105/tpc.106.047571Serino, G., & Deng, X.-W. (2003). THECOP9 SIGNALOSOME: Regulating Plant Development Through the Control of Proteolysis. Annual Review of Plant Biology, 54(1), 165-182. doi:10.1146/annurev.arplant.54.031902.134847Stratmann, J. W., & Gusmaroli, G. (2012). Many jobs for one good cop – The COP9 signalosome guards development and defense. Plant Science, 185-186, 50-64. doi:10.1016/j.plantsci.2011.10.004Lozano-Juste, J., & León, J. (2011). Nitric Oxide Regulates DELLA Content and PIF Expression to Promote Photomorphogenesis in Arabidopsis. Plant Physiology, 156(3), 1410-1423. doi:10.1104/pp.111.177741Nakagawa, T., Kurose, T., Hino, T., Tanaka, K., Kawamukai, M., Niwa, Y., … Kimura, T. (2007). Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. Journal of Bioscience and Bioengineering, 104(1), 34-41. doi:10.1263/jbb.104.34Fromont-Racine, M., Rain, J.-C., & Legrain, P. (1997). Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nature Genetics, 16(3), 277-282. doi:10.1038/ng0797-277Belda-Palazón B, Ruiz L, Martí E, Tárraga S, Tiburcio AF, et al.. (2012) Aminopropyltransferases involved in polyamine biosynthesis localize preferentially in the nucleus of plant cells. PLoS One 7(10), e46907.Simon, R., Igeño, M. I., & Coupland, G. (1996). Activation of floral meristem identity genes in Arabidopsis. Nature, 384(6604), 59-62. doi:10.1038/384059a0Martínez, C., Pons, E., Prats, G., & León, J. (2003). Salicylic acid regulates flowering time and links defence responses and reproductive development. The Plant Journal, 37(2), 209-217. doi:10.1046/j.1365-313x.2003.01954.xKyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157(1), 105-132. doi:10.1016/0022-2836(82)90515-0Marmagne, A., Rouet, M.-A., Ferro, M., Rolland, N., Alcon, C., Joyard, J., … Ephritikhine, G. (2004). Identification of New Intrinsic Proteins inArabidopsisPlasma Membrane Proteome. Molecular & Cellular Proteomics, 3(7), 675-691. doi:10.1074/mcp.m400001-mcp200Nühse, T. S., Stensballe, A., Jensen, O. N., & Peck, S. C. (2004). Phosphoproteomics of the Arabidopsis Plasma Membrane and a New Phosphorylation Site Database. The Plant Cell, 16(9), 2394-2405. doi:10.1105/tpc.104.023150Kobayashi, Y., & Weigel, D. (2007). Move on up, it’s time for change mobile signals controlling photoperiod-dependent flowering. Genes & Development, 21(19), 2371-2384. doi:10.1101/gad.1589007Jaeger, K. E., & Wigge, P. A. (2007). FT Protein Acts as a Long-Range Signal in Arabidopsis. Current Biology, 17(12), 1050-1054. doi:10.1016/j.cub.2007.05.008Mathieu, J., Warthmann, N., Küttner, F., & Schmid, M. (2007). Export of FT Protein from Phloem Companion Cells Is Sufficient for Floral Induction in Arabidopsis. Current Biology, 17(12), 1055-1060. doi:10.1016/j.cub.2007.05.009Mir, R., Hernández, M. L., Abou-Mansour, E., Martínez-Rivas, J. M., Mauch, F., Métraux, J.-P., & León, J. (2013). Pathogen and Circadian Controlled 1 (PCC1) regulates polar lipid content, ABA-related responses, and pathogen defence in Arabidopsis thaliana. Journal of Experimental Botany, 64(11), 3385-3395. doi:10.1093/jxb/ert177Nordgård, O., Dahle, Ø., Andersen, T. Ø., & Gabrielsen, O. S. (2001). JAB1/CSN5 interacts with the GAL4 DNA binding domain: A note of caution about two-hybrid interactions. Biochimie, 83(10), 969-971. doi:10.1016/s0300-9084(01)01329-3Kwok, S. F., Staub, J. M., & Deng, X.-W. (1999). Characterization of two subunits of Arabidopsis 19S proteasome regulatory complex and its possible interaction with the COP9 complex 1 1Edited by J. Karn. Journal of Molecular Biology, 285(1), 85-95. doi:10.1006/jmbi.1998.2315Nezames, C. D., & Deng, X. W. (2012). The COP9 Signalosome: Its Regulation of Cullin-Based E3 Ubiquitin Ligases and Role in Photomorphogenesis. Plant Physiology, 160(1), 38-46. doi:10.1104/pp.112.198879Moon, J., Parry, G., & Estelle, M. (2004). The Ubiquitin-Proteasome Pathway and Plant Development. The Plant Cell, 16(12), 3181-3195. doi:10.1105/tpc.104.161220Dreher, K., & Callis, J. (2007). Ubiquitin, Hormones and Biotic Stress in Plants. Annals of Botany, 99(5), 787-822. doi:10.1093/aob/mcl255Parry, G., & Estelle, M. (2004). Regulation of cullin-based ubiquitin ligases by the Nedd8/RUB ubiquitin-like proteins. Seminars in Cell & Developmental Biology, 15(2), 221-229. doi:10.1016/j.semcdb.2003.12.003Wee, S., Geyer, R. K., Toda, T., & Wolf, D. A. (2005). CSN facilitates Cullin–RING ubiquitin ligase function by counteracting autocatalytic adapter instability. Nature Cell Biology, 7(4), 387-391. doi:10.1038/ncb1241Kuramata, M., Masuya, S., Takahashi, Y., Kitagawa, E., Inoue, C., Ishikawa, S., … Kusano, T. (2008). Novel Cysteine-Rich Peptides from Digitaria ciliaris and Oryza sativa Enhance Tolerance to Cadmium by Limiting its Cellular Accumulation. Plant and Cell Physiology, 50(1), 106-117. doi:10.1093/pcp/pcn175Zeng, W., Melotto, M., & He, S. Y. (2010). Plant stomata: a checkpoint of host immunity and pathogen virulence. Current Opinion in Biotechnology, 21(5), 599-603. doi:10.1016/j.copbio.2010.05.006Wigge, P. A. (2011). FT, A Mobile Developmental Signal in Plants. Current Biology, 21(9), R374-R378. doi:10.1016/j.cub.2011.03.038Kardailsky, I. (1999). Activation Tagging of the Floral Inducer FT. Science, 286(5446), 1962-1965. doi:10.1126/science.286.5446.1962Srikanth, A., & Schmid, M. (2011). Regulation of flowering time: all roads lead to Rome. Cellular and Molecular Life Sciences, 68(12), 2013-2037. doi:10.1007/s00018-011-0673-yGalvao, V. C., Horrer, D., Kuttner, F., & Schmid, M. (2012). Spatial control of flowering by DELLA proteins in Arabidopsis thaliana. Development, 139(21), 4072-4082. doi:10.1242/dev.080879Cerdán, P. D., & Chory, J. (2003). Regulation of flowering time by light quality. Nature, 423(6942), 881-885. doi:10.1038/nature01636Guo, H. (1998). Regulation of Flowering Time by Arabidopsis Photoreceptors. Science, 279(5355), 1360-1363. doi:10.1126/science.279.5355.1360Liu, B., Zuo, Z., Liu, H., Liu, X., & Lin, C. (2011). Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Genes & Development, 25(10), 1029-1034. doi:10.1101/gad.2025011Weidler, G., zur Oven-Krockhaus, S., Heunemann, M., Orth, C., Schleifenbaum, F., Harter, K., … Batschauer, A. (2012). Degradation of Arabidopsis CRY2 Is Regulated by SPA Proteins and Phytochrome A. The Plant Cell, 24(6), 2610-2623. doi:10.1105/tpc.112.09821

    Physical and Chemical Characterization of Therapeutic Iron Containing Materials: A Study of Several Superparamagnetic Drug Formulations with the Β-FeOOH Or Ferrihydrite Structure

    No full text
    The effectiveness of therapeutically used iron compounds is related to their physical and chemical properties. Four different iron compounds used in oral, intravenous, and intramuscular therapy have been examined by X-ray powder diffraction, iron-57 M6ssbauer spectroscopy, transmission electron microscopy, BET surface area measurement, potentiometric titration and studied through dissolution kinetics determinations using acid, reducing and chelating agents. All compounds are nanosized with particle diameters, as determined by X-ray diffraction, ranging from 1 to 4.1 nm. The superparamagnetic blocking temperatures, as determined by MĂśssbauer spectroscopy, indicate that the relative diameters of the aggregates range from 2.5 to 4.1 nm. Three of the iron compounds have an akaganeite-like structure, whereas one has a ferrihydrite-like structure. As powders the particles form large and dense aggregates which have a very low surface area on the order of 1 m2 g-1. There is evidence, however, that in a colloidal solution the surface area is increased by two to three orders of magnitude, presumably as a result of the break up of the aggregates. Iron release kinetics by acid, chelating and reducing agents reflect the high surface area, the size and crystallinity of the particles, and the presence of the protective carbohydrate layer coating the iron compound. Within a physiologically relevant time period, the iron release produced by acid or large chelating ligands is small. In contrast, iron is rapidly mobilized by small organic chelating agents, such as oxalate, or by chelate-forming reductants, such as thioglycolate

    Comparison of the in vitro and in vivo release of digoxin from four different soft gelatin capsule formulations

    Full text link
    A blinded, four-treatment crossover study in 16 normal adult male volunteers compared plasma concentrations and urinary excretion of digoxin, measured by radioimmunoassay, after oral administration of soft gelatin capsule formulations of digoxin. Four 0.4-mg formulations with different in vitro “burst times” and dissolution rates were administered, with 2- week intervals between treatments. The two capsules with lowest in vitro burst times (2.9 and 16 min) gave comparable in vivo results. The other two capsules, with in vitro burst times of 62 and 229 min, produced significant delays in digoxin absorption . In vitro-in vivo correlations were obtained by comparing the logarithm of the in vitro burst time with time to peak plasma level and the time to the first measurable plasma level (≥ 0.05 ng/ml). Also, the mean time to peak plasma level correlated with the logarithm of the time required to release either 50% or 85% of the digoxin in vitro. No significant changes were found in the amount of digoxin absorbed from each capsule as determined by urinary excretion or AUC 0-∞ .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45076/1/10928_2005_Article_BF01059735.pd
    corecore