434 research outputs found

    Size and density redistribution by a rod obstacle in a cluster jet for quasi-phase matching of high harmonic generation

    Get PDF
    We investigate the the possibility to realize a fully coherent XUV light source generating wavelengths down to 4 nm by using high-order harmonic generation (HHG) in an ionized medium. Due to the strong ionization, current p We investigate the possibility to realize a fully coherent XUV light source generating wavelengths down to 4 nm by using high-order harmonic generation (HHG) in an ionized medium. Due to the strong ionization, current phase-matching techniques for HHG are not suitable. Instead, we will investigate quasi-phase matching (QPM) over an extended interaction length to increase the output pulse energy. For this, we will prepare a cluster jet from a 5 mm long supersonic nozzle operated at high backing pressure (up to 75 bar). The modulation for QPM is obtained by placing either an array of wires or slits on top of the exit of the nozzle. Here, we report on the characterization of the modulated argon cluster jet. We apply Rayleigh scattering imaging and interferometry to infer the cluster size and total atomic number density distribution in the jet. Initial experiments concern the modulation of the jet by placing a 2 mm rod above the nozzle. The rst results on the cluster size and density distribution will be compared with the simulation results from our 2D fluid dynamics model

    A novel malaria vaccine candidate antigen expressed in Tetrahymena thermophila

    Get PDF
    Development of effective malaria vaccines is hampered by the problem of producing correctly folded Plasmodium proteins for use as vaccine components. We have investigated the use of a novel ciliate expression system, Tetrahymena thermophila, as a P. falciparum vaccine antigen platform. A synthetic vaccine antigen composed of N-terminal and C-terminal regions of merozoite surface protein-1 (MSP-1) was expressed in Tetrahymena thermophila. The recombinant antigen was secreted into the culture medium and purified by monoclonal antibody (mAb) affinity chromatography. The vaccine was immunogenic in MF1 mice, eliciting high antibody titers against both N- and C-terminal components. Sera from immunized animals reacted strongly with P. falciparum parasites from three antigenically different strains by immunofluorescence assays, confirming that the antibodies produced are able to recognize parasite antigens in their native form. Epitope mapping of serum reactivity with a peptide library derived from all three MSP-1 Block 2 serotypes confirmed that the MSP-1 Block 2 hybrid component of the vaccine had effectively targeted all three serotypes of this polymorphic region of MSP-1. This study has successfully demonstrated the use of Tetrahymena thermophila as a recombinant protein expression platform for the production of malaria vaccine antigens

    Developmental disturbances associated with agenesis of the permanent maxillary lateral incisor

    Get PDF
    The aim of this study was to characterise the intra and extra-oral phenotype associated with agenesis of the permanent maxillary lateral incisor. We compared three groups: (1) subjects with agenesis of one or both permanent maxillary lateral incisors (n=80); (2) first and second degree relatives of group 1 with no agenesis of the permanent maxillary lateral incisor and (3) subjects with no agenesis of the maxillary lateral incisor or family history of it (n=49). For each of the 201 subjects detailed clinical information was reviewed and panoramic radiographs were analysed. Considering only the sample with unilateral agenesis, microdontia of the contralateral permanent maxillary lateral incisor was significantly more frequent in group 1 (82.4%) than in group 2 (25%) and the control group (2%). This supports the theory that microdontia is a variable expression of the same developmental disturbance that causes tooth agenesis. The absence of third molars occurred more often in group 1 (36.2%) than in groups 2 and 3 (18.6% and 18.9% respectively), confirming that agenesis of third molars was markedly associated with the agenesis of the permanent maxillary lateral incisor. Agenesis of teeth other than third molars was not significantly different among subjects with agenesis of the permanent maxillary lateral incisor and their relatives. The frequencies of supernumerary teeth, permanent maxillary canine impaction, general health condition and minor anomalies were not significantly different between the three groups

    Rare central nervous system tumors in adults:a population-based study of ependymomas, pilocytic astrocytomas, medulloblastomas, and intracranial germ cell tumors

    Get PDF
    BACKGROUND: Ependymomas, pilocytic astrocytomas, medulloblastomas, and intracranial germ cell tumors occur relative frequently in children, but are rare central nervous system (CNS) tumors in adults. In this population-based survey, we established incidence, treatment, and survival patterns for these tumors diagnosed in adult patients (≥18 years) over a 30-year period (1989-2018). METHODS: Data on 1384 ependymomas, 454 pilocytic astrocytomas, 205 medulloblastomas, and 112 intracranial germ cell tumors were obtained from the Netherlands Cancer Registry (NCR) on the basis of a histopathological diagnosis. For each tumor type, age-standardized incidence rates and estimated annual percentage change were calculated. Trends in incidence and main treatment modalities were reported per 5-year periods. Overall survival was calculated using the Kaplan-Meier method, and relative survival rates were estimated using the Pohar-Perme estimator. RESULTS: Incidence and survival rates remained generally stable for pilocytic astrocytomas, medulloblastomas, and germ cell tumors. Increasing incidence was observed for spinal ependymomas, mostly for myxopapillary ependymomas, and survival improved over time for grade II ependymomas (P < .01). Treatment patterns varied over time with shifting roles for surgery in ependymomas and for chemotherapy and radiation in medulloblastomas and germinomas. CONCLUSIONS: The study provides baseline information for highly needed national and international standard treatment protocols, and thus for further improving patient outcomes in these rare CNS tumors

    Effects of hypodontia on craniofacial structures and mandibular growth pattern

    Get PDF
    Introduction This study was performed to examine craniofacial structures in persons with hypodontia and to reveal any differences, that may occur, when agenetic teeth are only found in the maxilla, the mandible or in both jaws. The groups consistent of 50 children (33 girls, 17 boys) aged between 9 and 13.5 years were analyzed and assigned to three subgroups. Group 1= upper jaw hypodontia. Group 2= lower jaw hypodontia. Group 3= hypodontia in both jaws. Material and methods Eleven angular and three index measurements from lateral encephalographs and two linear measurements from dental blaster casts were calculated. All data was statistically analyzed, parameters with p<5% were investigated for each subgroup respectively. Results In comparison with standards the study group showed bimaxillary retrognathism and a reduction of the lower anterior facial height. Moreover both overbite and overjet significantly increased. Other values laid within the normal ranges. Evaluating results of the subgroups, differences in the means of SNA, SNB and overjet between the groups were observed. Analysis of the mandibular growth pattern revealed, that neither vertical nor horizontal patterns are dominant in hypodontia patients. Conclusions In certain dentofacial parameters differences between persons with hypodontia and such with full dentition exist. According to our findings agenetic teeth may have a negative influence on the saggital development of a jaw and the lower face and may be responsible for increased overbites. This should receive attention in orthodontic treatment of hypodontia patients

    Systemic Hydrocortisone To Prevent Bronchopulmonary Dysplasia in preterm infants (the SToP-BPD study): Statistical analysis plan

    Get PDF
    Background: Bronchopulmonary dysplasia (BPD) is the most common complication of preterm birth with short-term and long-term adverse consequences. Although the glucocorticoid dexamethasone has been proven to be beneficial for the prevention of BPD, there are concerns about an increased risk of adverse neurodevelopmental outcome. Hydrocortisone has been suggested as an alternative therapy. The aim of the Systemic Hydrocortisone To Prevent Bronchopulmonary Dysplasia in preterm infants (SToP-BPD) trial is to assess the efficacy and safety of postnatal hydrocortisone administration for the reduction of death or BPD in ventilator-dependent preterm infants. Methods/design: The SToP-BPD study is a multicentre, double-blind, placebo-controlled hydrocortisone trial in preterm infants at risk for BPD. After parental informed consent is obtained, ventilator-dependent infants are randomly allocated to hydrocortisone or placebo treatment during a 22-day period. The primary outcome measure is the composite outcome of death or BPD at 36 weeks postmenstrual age. Secondary outcomes are short-term effects on pulmonary condition and long-term neurodevelopmental sequelae assessed at 2 years corrected age. Complications of treatment, other serious adverse events and suspected unexpected serious adverse reactions are reported as safety outcomes. This pre-specified statistical analysis plan was written and submitted without knowledge of the unblinded data

    In vitro and in vivo mRNA delivery using lipid-enveloped pHresponsive polymer nanoparticles

    Get PDF
    Biodegradable core−shell structured nanoparticles with a poly(β-amino ester) (PBAE) core enveloped by a phospholipid bilayer shell were developed for in vivo mRNA delivery with a view toward delivery of mRNA-based vaccines. The pH-responsive PBAE component was chosen to promote endosome disruption, while the lipid surface layer was selected to minimize toxicity of the polycation core. Messenger RNA was efficiently adsorbed via electrostatic interactions onto the surface of these net positively charged nanoparticles. In vitro, mRNA-loaded particle uptake by dendritic cells led to mRNA delivery into the cytosol with low cytotoxicity, followed by translation of the encoded protein in these difficult-to-transfect cells at a frequency of 30%. Particles loaded with mRNA administered intranasally (i.n.) in mice led to the expression of the reporter protein luciferase in vivo as soon as 6 h after administration, a time point when naked mRNA given i.n. showed no expression. At later time points, luciferase expression was detected in naked mRNA-treated mice, but this group showed a wide variation in levels of transfection, compared to particle-treated mice. This system may thus be promising for noninvasive delivery of mRNA-based vaccines.United States. Dept. of Defense (Institute for Soldier Nanotechnology, contract W911NF-07-D-0004)Ragon Institute of MGH, MIT and HarvardSingapore. Agency for Science, Technology and ResearchHoward Hughes Medical Institute (Investigator
    corecore