171 research outputs found

    Generation of focusing ion beams by magnetized electron sheath acceleration.

    Get PDF
    We present the first 3D fully kinetic simulations of laser driven sheath-based ion acceleration with a kilotesla-level applied magnetic field. The application of a strong magnetic field significantly and beneficially alters sheath based ion acceleration and creates two distinct stages in the acceleration process associated with the time-evolving magnetization of the hot electron sheath. The first stage delivers dramatically enhanced acceleration, and the second reverses the typical outward-directed topology of the sheath electric field into a focusing configuration. The net result is a focusing, magnetic field-directed ion source of multiple species with strongly enhanced energy and number. The predicted improvements in ion source characteristics are desirable for applications and suggest a route to experimentally confirm magnetization-related effects in the high energy density regime. We additionally perform a comparison between 2D and 3D simulation geometry, on which basis we predict the feasibility of observing magnetic field effects under experimentally relevant conditions

    Kinetics of n-Butoxy and 2-Pentoxy Isomerization and Detection of Primary Products by Infrared Cavity Ringdown Spectroscopy

    Get PDF
    The primary products of n-butoxy and 2-pentoxy isomerization in the presence and absence of O_2 have been detected using pulsed laser photolysis-cavity ringdown spectroscopy (PLP-CRDS). Alkoxy radicals n-butoxy and 2-pentoxy were generated by photolysis of alkyl nitrite precursors (n-butyl nitrite or 2-pentyl nitrite, respectively), and the isomerization products with and without O_2 were detected by infrared cavity ringdown spectroscopy 20 μs after the photolysis. We report the mid-IR OH stretch (ν_1) absorption spectra for δ-HO-1-C_4H_8•, δ-HO-1-C_4H_8OO•, δ-HO-1-C_5H_(10)•, and δ-HO-1-C_5H_(10)OO•. The observed ν_1 bands are similar in position and shape to the related alcohols (n-butanol and 2-pentanol), although the HOROO• absorption is slightly stronger than the HOR• absorption. We determined the rate of isomerization relative to reaction with O_2 for the n-butoxy and 2-pentoxy radicals by measuring the relative ν_1 absorbance of HOROO• as a function of [O_2]. At 295 K and 670 Torr of N_2 or N_2/O_2, we found rate constant ratios of k_(isom)/k_(O2) = 1.7 (±0.1) × 10^(19) cm^(–3) for n-butoxy and k_(isom)/k_(O2) = 3.4(±0.4) × 10^(19) cm^(–3) for 2-pentoxy (2σ uncertainty). Using currently known rate constants k_(O2), we estimate isomerization rates of k_(isom) = 2.4 (±1.2) × 10^5 s^(–1) and k_(isom) ≈ 3 × 10^5 s^(–1) for n-butoxy and 2-pentoxy radicals, respectively, where the uncertainties are primarily due to uncertainties in k_(O2). Because isomerization is predicted to be in the high pressure limit at 670 Torr, these relative rates are expected to be the same at atmospheric pressure. Our results include corrections for prompt isomerization of hot nascent alkoxy radicals as well as reaction with background NO and unimolecular alkoxy decomposition. We estimate prompt isomerization yields under our conditions of 4 ± 2% and 5 ± 2% for n-butoxy and 2-pentoxy formed from photolysis of the alkyl nitrites at 351 nm. Our measured relative rate values are in good agreement with and more precise than previous end-product analysis studies conducted on the n-butoxy and 2-pentoxy systems. We show that reactions typically neglected in the analysis of alkoxy relative kinetics (decomposition, recombination with NO, and prompt isomerization) may need to be included to obtain accurate values of k_(isom)/k_(O2)

    Phase Control of Nonlinear Breit-Wheeler Pair Creation

    Full text link
    Electron-positron pair creation occurs throughout the universe in the environments of extreme astrophysical objects, such as pulsar magnetospheres and black hole accretion disks. The difficulty of emulating these environments in the laboratory has motivated the use of ultrahigh-intensity laser pulses for pair creation. Here we show that the phase offset between a laser pulse and its second harmonic can be used to control the relative transverse motion of electrons and positrons created in the nonlinear Breit-Wheeler process. Analytic theory and particle-in-cell simulations of a head-on collision between a two-color laser pulse and electron beam predict that with an appropriate phase offset, the electrons will drift in one direction and the positrons in the other. The resulting current may provide a collective signature of nonlinear Breit-Wheeler, while the spatial separation resulting from the relative motion may facilitate isolation of positrons for subsequent applications or detection.Comment: 8 pages, 5 figure

    Differential regulation of TNF-α and IL-1β production from endotoxin stimulated human monocytes by phosphodiesterase inhibitors

    Get PDF
    The effect of selective PDE-I (vinpocetine), PDE-III (milrinone, CI-930), PDE-IV (rolipram, nitroquazone), and PDE-V (zaprinast) isozyme inhibitors on TNF-α and IL-1β production from LPS stimulated human monocytes was investigated. The PDE-IV inhibitors caused a concentration dependent inhibition of TNF-α production, but only partially inhibited IL-1β at high concentrations. High concentrations of the PDE-III inhibitors weakly inhibited TNF-α, but had no effect on IL-1β production. PDE-V inhibition was associated with an augmentation of cytokine secretion. Studies with combinations of PDE isozyme inhibitors indicated that PDE-III and PDE-V inhibitors modulate rolipram's suppression of TNF production in an additive manner. These data confirm that TNF-α and IL-1β production from LPS stimulated human monocytes are differentially regulated, and suggest that PDE-IV inhibitors have the potential to suppress TNF levels in man

    Condensate fluctuations of a trapped, ideal Bose gas

    Get PDF
    For a non-self-interacting Bose gas with a fixed, large number of particles confined to a trap, as the ground state occupation becomes macroscopic, the condensate number fluctuations remain micrscopic. However, this is the only significant aspect in which the grand canonical description differs from canonical or microcanonical in the thermodynamic limit. General arguments and estimates including some vanishingly small quantities are compared to explicit, fixed-number calculations for 10^2 to 10^6 particles.Comment: 16 pages (REVTeX) plus 4 figures (ps), revision includes brief comparison of repulsive-interaction vs. fixed-N fluctuation damping. To be published in Phys. Rev.

    Generation of megatesla magnetic fields by intense-laser-driven microtube implosions

    Full text link
    A microtube implosion driven by ultraintense laser pulses is used to produce ultrahigh magnetic fields. Due to the laser-produced hot electrons with energies of mega-electron volts, cold ions in the inner wall surface implode towards the central axis. By pre-seeding uniform magnetic fields on the kilotesla order, the Lorenz force induces the Larmor gyromotion of the imploding ions and electrons. Due to the resultant collective motion of relativistic charged particles around the central axis, strong spin current densities of ~ peta-ampere/cm2 are produced with a few tens of nm size, generating megatesla-order magnetic fields. The underlying physics and important scaling are revealed by particle simulations and a simple analytical model. The concept holds promise to open new frontiers in many branches of fundamental physics and applications in terms of ultrahigh magnetic fields.Comment: 22 pages, 7 figure
    • …
    corecore