71 research outputs found
Criticality and Superfluidity in liquid He-4 under Nonequilibrium Conditions
We review a striking array of recent experiments, and their theoretical
interpretations, on the superfluid transition in He in the presence of a
heat flux, . We define and evaluate a new set of critical point exponents.
The statics and dynamics of the superfluid-normal interface are discussed, with
special attention to the role of gravity. If is in the same direction as
gravity, a self-organized state can arise, in which the entire sample has a
uniform reduced temperature, on either the normal or superfluid side of the
transition. Finally, we review recent theory and experiment regarding the heat
capacity at constant . The excitement that surrounds this field arises from
the fact that advanced thermometry and the future availability of a
microgravity experimental platform aboard the International Space Station will
soon open to experimental exploration decades of reduced temperature that were
previously inaccessible.Comment: 16 pages, 9 figures, plus harvard.sty style file for references
Accepted for publication in Colloquia section of Reviews of Modern Physic
Quantum critical phenomena of long-range interacting bosons in a time-dependent random potential
We study the superfluid-insulator transition of a particle-hole symmetric
system of long-range interacting bosons in a time-dependent random potential in
two dimensions, using the momentum-shell renormalization-group method. We find
a new stable fixed point with non-zero values of the parameters representing
the short- and long-range interactions and disorder when the interaction is
asymptotically logarithmic. This is contrasted to the non-random case with a
logarithmic interaction, where the transition is argued to be first-order, and
to the Coulomb interaction case, where either a first-order transition or
an XY-like transition is possible depending on the parameters. We propose that
our model may be relevant in studying the vortex liquid-vortex glass transition
of interacting vortex lines in point-disordered type-II superconductors.Comment: 10 pages, 3 figure
Dual theory of the superfluid-Bose glass transition in disordered Bose-Hubbard model in one and two dimensions
I study the zero temperature phase transition between superfluid and
insulating ground states of the Bose-Hubbard model in a random chemical
potential and at large integer average number of particles per site. Duality
transformation maps the pure Bose-Hubbard model onto the sine-Gordon theory in
one dimension (1D), and onto the three dimensional Higgs electrodynamics in two
dimensions (2D). In 1D the random chemical potential in dual theory couples to
the space derivative of the dual field, and appears as a random magnetic field
along the imaginary time direction in 2D. I show that the transition from the
superfluid state in both 1D and 2D is always controlled by the random critical
point. This arises due to a coupling constant in the dual theory with replicas
which becomes generated at large distances by the random chemical potential,
and represents a relevant perturbation at the pure superfluid-Mott insulator
fixed point. At large distances the dual theory in 1D becomes equivalent to the
Haldane's macroscopic representation of disordered quantum fluid, where the
generated term is identified with random backscattering. In 2D the generated
coupling corresponds to the random mass of the complex field which represents
vortex loops. I calculate the critical exponents at the superfluid-Bose glass
fixed point in 2D to be \nu=1.38 and z=1.93, and the universal conductivity at
the transition \sigma_c = 0.26 e_{*}^2 /h, using the one-loop field-theoretic
renormalization group in fixed dimension.Comment: 25 pages, 6 Postscript figures, LaTex, references updated, typos
corrected, final version to appear in Phys. Rev. B, June 1, 199
Infrared behavior of interacting bosons at zero temperature
We review the infrared behavior of interacting bosons at zero temperature.
After a brief discussion of the Bogoliubov approximation and the breakdown of
perturbation theory due to infrared divergences, we present two approaches that
are free of infrared divergences -- Popov's hydrodynamic theory and the
non-perturbative renormalization group -- and allow us to obtain the exact
infrared behavior of the correlation functions. We also point out the
connection between the infrared behavior in the superfluid phase and the
critical behavior at the superfluid--Mott-insulator transition in the
Bose-Hubbard model.Comment: 8 pages, 4 figures. Proceedings of the 19th International Laser
Physics Workshop, LPHYS'10 (Foz do Iguacu, Brazil, July 5-9, 2010
Critical behavior at superconductor-insulator phase transitions near one dimension
I argue that the system of interacting bosons at zero temperature and in
random external potential possesses a simple critical point which describes the
proliferation of disorder-induced topological defects in the superfluid ground
state, and which is located at weak disorder close to and above one dimension.
This makes it possible to address the critical behavior at the superfluid-Bose
glass transition in dirty boson systems by expanding around the lower critical
dimension d=1. Within the formulated renormalization procedure near d=1 the
dynamical critical exponent is obtained exactly and the correlation length
exponent is calculated as a Laurent series in the parameter \sqrt{\epsilon},
with \epsilon=d-1: z=d, \nu=1/\sqrt{3\epsilon} for the short range, and z=1,
\nu=\sqrt{2/3\epsilon}, for the long-range Coulomb interaction between bosons.
The identified critical point should be stable against the residual
perturbations in the effective action for the superfluid, at least in
dimensions 1\leq d \leq 2, for both short-range and Coulomb interactions. For
the superfluid-Mott insulator transition in the system in a periodic potential
and at a commensurate density of bosons I find \nu=(1/2\sqrt{\epsilon})+
1/4+O(\sqrt{\epsilon}), which yields a result reasonably close to the known XY
critical exponent in d=2+1. The critical behavior of the superfluid density,
phonon velocity and the compressibility in the system with the short-range
interactions is discussed.Comment: 23 pages, 1 Postscript figure, LaTe
The superconductor-insulator transition in 2D dirty boson systems
Universal properties of the zero temperature superconductor-insulator
transition in two-dimensional amorphous films are studied by extensive Monte
Carlo simulations of bosons in a disordered medium. We report results for both
short-range and long-range Coulomb interactions for several different points in
parameter space. In all cases we observe a transition from a superconducting
phase to an insulating Bose glass phase. {}From finite-size scaling of our
Monte Carlo data we determine the universal conductivity and the
critical exponents at the transition. The result for bosons with long-range Coulomb interaction is roughly consistent
with experiments reported so far. We also find for bosons with short-range interactions.Comment: Revtex 3.0, 54 pages, 17 figures included, UBCTP-93-01
Targeting HER2/neu with a fully human IgE to harness the allergic reaction against cancer cells
Breast and ovarian cancer are two of the leading causes of cancer deaths among women in the United States. Overexpression of the HER2/neu oncoprotein has been reported in patients affected with breast and ovarian cancers, and is associated with poor prognosis. To develop a novel targeted therapy for HER2/neu expressing tumors, we have constructed a fully human IgE with the variable regions of the scFv C6MH3-B1 specific for HER2/neu. This antibody was expressed in murine myeloma cells and was properly assembled and secreted. The Fc region of this antibody triggers in vitro degranulation of rat basophilic cells expressing human FcεRI (RBL SX-38) in the presence of murine mammary carcinoma cells that express human HER2/neu (D2F2/E2), but not the shed (soluble) antigen (ECDHER2) alone. This IgE is also capable of inducing passive cutaneous anaphylaxis in a human FcεRIα transgenic mouse model, in the presence of a cross-linking antibody, but not in the presence of soluble ECDHER2. Additionally, IgE enhances antigen presentation in human dendritic cells and facilitates cross-priming, suggesting that the antibody is able to stimulate a secondary T-cell anti-tumor response. Furthermore, we show that this IgE significantly prolongs survival of human FcεRIα transgenic mice bearing D2F2/E2 tumors. We also report that the anti-HER2/neu IgE is well tolerated in a preliminary study conducted in Macaca fascicularis (cynomolgus) monkeys. In summary, our results suggest that this IgE should be further explored as a potential therapeutic against HER2/neu overexpressing tumors, such as breast and ovarian cancers.Fil: Daniels, Tracy R.. University of California at Los Angeles; Estados UnidosFil: Leuchter, Richard K.. University of California at Los Angeles; Estados UnidosFil: Quintero, Rafaela. University of California; Estados UnidosFil: Helguera, Gustavo Fernando. University of California at Los Angeles; Estados Unidos. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rodríguez, José A.. University of California at Los Angeles; Estados UnidosFil: Martínez Maza, Otoniel. University of California at Los Angeles; Estados UnidosFil: Schultes, Birgit C.. Advanced Immune Therapeutics, Inc.; Estados Unidos. Momenta Pharmaceuticals, Inc.; Estados UnidosFil: Nicodemus, Christopher F.. Advanced Immune Therapeutics, Inc.; Estados UnidosFil: Penichet, Manuel L.. University of California at Los Angeles; Estados Unido
- …