411 research outputs found
New members of the neurexin superfamily: multiple rodent homologues of the human CASPR5 gene
Proteins of the Caspr family are involved in cell contacts and communication in the nervous system. We identified and, by in silico reconstruction, compiled three orthologues of the human CASPR5 gene from the mouse genome, four from the rat genome, and one each from the chimpanzee, dog, opossum, and chicken genomes. Obviously, Caspr5 gene duplications have taken place during evolution of the rodent lineage. In the rat, the four paralogues are located in one chromosome arm, Chr 13p. In the mouse, however, the three Caspr5 genes are located in two chromosomes, Chr 1 and Chr 17. RT-PCR shows that all three mouse paralogues are being expressed. Common expression is found in brain tissue but different expression patterns are seen in other organs during fetal development and in the adult stage. Tissue specificity of expression has diverged during evolution of this young rodent gene family
Online-Ressource
We present a novel, cost efficient two-phase design for predictive clinical gene expression studies: early marker panel determination (EMPD). In Phase-1, genome-wide microarrays are used only for a small number of individual patient samples. From this Phase-1 data a panel of marker genes is derived. In Phase-2, the expression values of these marker panel genes are measured for a large group of patients and a predictive classification model is learned from this data. Phase-2 does not require the use of expensive whole genome microarrays, thus making EMPD a cost efficient alternative for current trials. The expected performance loss of EMPD is compared to designs which use genome-wide microarrays for all patients. We also examine the trade-off between the number of patients included in Phase-1 and the number of marker genes required in Phase-2. By analysis of five published datasets we find that in Phase-1 already 16 patients per group are sufficient to determine a suitable marker panel of 10 genes, and that this early decision compromises the final performance only marginally
Increased proinflammatory endothelial response to S100A8/A9 after preactivation through advanced glycation end products
BACKGROUND: Atherosclerosis is an inflammatory disease in which a perpetuated activation of NFkappaB via the RAGE (receptor for advanced glycation end products)-MAPK signalling pathway may play an important pathogenetic role. As recently S100 proteins have been identified as ligands of RAGE, we sought to determine the effects of the proinflammatory heterodimer of S100A8/S100A9 on the RAGE-NFkappaB mediated induction of proinflammatory gene expression. METHODS: Human umbilical vein endothelial cells (HUVEC) were preincubated for 72 h with AGE-albumin or unmodified albumin for control, whereas AGE-albumin induction resulted in an upregulation of RAGE. Following this preactivation, cells were stimulated for 48 h with heterodimeric human recombinant S100A8/S100A9. RESULTS: Heterodimeric S100A8/S100A9 enhanced secretion of IL-6, ICAM-1, VCAM-1 and MCP1 in AGE-albumin pretreated HUVEC in a dose dependent manner. These effects could not be detected after stimulation with the homodimeric proteins S100A8, S100A9, S100A1 and S100B. The effects of heterodimeric S100A8/S100A9 were reduced by inhibition of the MAP-kinase pathways ERK1/2 and p38 by PD 98059 and SB 203580, respectively. CONCLUSION: The heterodimeric S100A8/S100A9 might therefore play a hitherto unknown role in triggering atherosclerosis in diabetes and renal failure, pathophysiological entities associated with a high AGE burden. Thus, blocking heterodimeric S100A8/S100A9 might represent a novel therapeutic modality in treating atherosclerosis
Integrative genomic analyses reveal an androgen-driven somatic alteration landscape in early-onset prostate cancer
Early-onset prostate cancer (EO-PCA) represents the earliest clinical manifestation of prostate cancer. To compare the genomic alteration landscapes of EO-PCA with "classical" (elderly-onset) PCA, we performed deep sequencing-based genomics analyses in 11 tumors diagnosed at young age, and pursued comparative assessments with seven elderly-onset PCA genomes. Remarkable age-related differences in structural rearrangement (SR) formation became evident, suggesting distinct disease pathomechanisms. Whereas EO-PCAs harbored a prevalence of balanced SRs, with a specific abundance of androgen-regulated ETS gene fusions including TMPRSS2:ERG, elderly-onset PCAs displayed primarily non-androgen-associated SRs. Data from a validation cohort of > 10,000 patients showed age-dependent androgen receptor levels and a prevalence of SRs affecting androgen-regulated genes, further substantiating the activity of a characteristic "androgen-type" pathomechanism in EO-PCA
3037 – Combined single-cell DNA methylome and transcriptome analysis identifies molecular sattes of early lineage commitment [Abstract]
The spatial zonation of the murine placental vasculature is specified by epigenetic mechanisms
The labyrinthian fetoplacental capillary network is vital for proper nourishment of the developing embryo. Dysfunction of the maternal-fetal circulation is a primary cause of placental insufficiency. Here, we show that the spatial zonation of the murine placental labyrinth vasculature is controlled by flow-regulated epigenetic mechanisms. Spatiotemporal transcriptomic profiling identified a gradual change in the expression of epigenetic enzymes, including the de novo DNA methyltransferase 3a (DNMT3A). Loss of Dnmt3a resulted in DNA hypomethylation and perturbation of zonated placental gene expression. The resulting global DNA hypomethylation impaired the angiogenic capacity of endothelial cells. Global or endothelium-predominant deletion of Dnmt3a resulted in impaired placental vascularization and fetal growth retardation (FGR). Human placental endothelial gene expression profiling associated preeclampsia with reduced DNMT3A expression. Collectively, our study identified DMNT3A as critical methylome-regulator of placental endothelial gene expression and function with clinical implications for placental dysfunction, as it occurs during preeclampsia or FGR
Activation-induced deaminase is critical for the establishment of DNA methylation patterns prior to the germinal center reaction
Limfòcits b; Metilació de l'ADN; GenomaLinfocitos b; Metilación de ADN; GenomaB-lymphocytes; DNA methylation; GenomeActivation-induced deaminase (AID) initiates antibody diversification in germinal center B cells by deaminating cytosines, leading to somatic hypermutation and class-switch recombination. Loss-of-function mutations in AID lead to hyper-IgM syndrome type 2 (HIGM2), a rare human primary antibody deficiency. AID-mediated deamination has been proposed as leading to active demethylation of 5-methycytosines in the DNA, although evidence both supports and casts doubt on such a role. In this study, using whole-genome bisulfite sequencing of HIGM2 B cells, we investigated direct AID involvement in active DNA demethylation. HIGM2 naïve and memory B cells both display widespread DNA methylation alterations, of which ∼25% are attributable to active DNA demethylation. For genes that undergo active demethylation that is impaired in HIGM2 individuals, our analysis indicates that AID is not directly involved. We demonstrate that the widespread alterations in the DNA methylation and expression profiles of HIGM2 naïve B cells result from premature overstimulation of the B-cell receptor prior to the germinal center reaction. Our data support a role for AID in B cell central tolerance in preventing the expansion of autoreactive cell clones, affecting the correct establishment of DNA methylation patterns.Spanish Ministry of Science, Innovation and Universities [SAF2017-88086-R to E.B.]; cofunded by FEDER funds/European Regional Development Fund (ERDF)—a way to build Europe. E.B is supported by Instituto de Salud Carlos III (ISCIII), Ref. AC18/00057, associated with i-PAD project (ERARE European Union program); P.L. and C.P. are supported by the German Cancer Aid project CO-CLL [70113869]; B.G. is funded by the Deutsche Forschungsgemeinschaft [GR1617/14-1/iPAD, SFB1160/2_B5, RESIST–EXC 2155–Project ID 390874280, CIBSS–EXC-2189–Project ID 390939984]; BMBF [GAIN 01GM1910A]. Funding for open access charge: Spanish Ministry of Science, Innovation and Universities [SAF2017-88086-R]
DNA methylation dynamics identify lineage-specific regulation patterns of hematopoietic differentiation [Abstract]
DNA demethylation-mediated downregulation of MNX1 in acute myeloid leukemia: ACUTE MYELOID LEUKEMIA
Identification of DNA methylation changes at cis-regulatory elements during early steps of HSC differentiation using tagmentation-based whole genome bisulfite sequencing
Epigenetic alterations during cellular differentiation are a key molecular mechanism which both instructs and reinforces the process of lineage commitment. Within the haematopoietic system, progressive changes in the DNA methylome of haematopoietic stem cells (HSCs) are essential for the effective production of mature blood cells. Inhibition or loss of function of the cellular DNA methylation machinery has been shown to lead to a severe perturbation in blood production and is also an important driver of malignant transformation. HSCs constitute a very rare cell population in the bone marrow, capable of life-long self-renewal and multi-lineage differentiation. The low abundance of HSCs has been a major technological barrier to the global analysis of the CpG methylation status within both HSCs and their immediate progeny, the multipotent progenitors (MPPs). Within this Extra View article, we review the current understanding of how the DNA methylome regulates normal and malignant hematopoiesis. We also discuss the current methodologies that are available for interrogating the DNA methylation status of HSCs and MPPs and describe a new data set that was generated using tagmentation-based whole genome bisulfite sequencing (TWGBS) in order to comprehensively map methylated cytosines using the limited amount of genomic DNA that can be harvested from rare cell populations. Extended analysis of this data set clearly demonstrates the added value of genome-wide sequencing of methylated cytosines and identifies novel important cis-acting regulatory regions that are dynamically remodeled during the first steps of haematopoietic differentiation
- …
