18 research outputs found
ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π΄Π΅ΡΠΎΡΠΌΠ°ΡΠΈΠΉ ΠΏΡΠΎΠ²ΠΎΠ΄Π° ΠΎΠ±ΠΌΠΎΡΠΎΠΊ ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΎΡΠ° ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΡΠΌ ΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠΌ ΠΏΠΎΠ»Π΅ΠΌ
ΠΡΠΈΠ²ΠΎΠ΄ΠΈΡΡΡ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ΄ΠΎΠ»ΡΠ½ΡΡ
ΠΈ ΠΏΠΎΠΏΠ΅ΡΠ΅ΡΠ½ΡΡ
Π΄Π΅ΡΠΎΡΠΌΠ°ΡΠΈΠΉ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ° ΠΎΠ±ΠΌΠΎΡΠΊΠΈ ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΎΡΠ°, Π²ΡΠ·Π²Π°Π½Π½ΡΡ
ΡΠΎΠΊΠΎΠΌ ΠΊΠΎΡΠΎΡΠΊΠΎΠ³ΠΎ Π·Π°ΠΌΡΠΊΠ°Π½ΠΈΡ. ΠΡΠΈΠ²ΠΎΠ΄ΡΡΡΡ ΠΏΠΎΠ»Π΅Π·Π½ΡΠ΅ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡΠΈΠ΅ ΠΎΡΠ΅Π½ΠΈΡΡ ΡΠ΄Π»ΠΈΠ½Π΅Π½ΠΈΡ ΠΈ ΡΠ΄Π²ΠΈΠ³ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² Π² ΠΎΠ±ΠΌΠΎΡΠΊΠ΅ ΠΏΡΠΈ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠΌ ΡΠΎΠΊΠ΅. ΠΡΠΈΠ²ΠΎΠ΄ΠΈΡΡΡ ΠΏΡΠΈΠΌΠ΅Ρ ΡΠ°ΡΡΠ΅ΡΠ° ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠΎΠ½Π΄Π΅ΡΠΎΠΌΠΎΡΠΎΡΠ½ΡΡ
ΡΠΈΠ» Π΄Π»Ρ ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ² ΠΎΠ±ΠΌΠΎΡΠΊΠΈ ΡΡΠ°Π½ΡΡΠΎΡΠΌΠ°ΡΠΎΡΠ° ΠΊΡΡΠ³Π»ΠΎΠ³ΠΎ ΠΈ ΠΏΡΡΠΌΠΎΡΠ³ΠΎΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ
ΠΠ΅ΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ Π² Π³Π΅ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΡΠΈ ΠΎΡΠ²ΠΎΠ΅Π½ΠΈΠΈ ΠΡΠΊΡΠΈΠΊΠΈ
Micromachining of SiC with Nd:YAG laser radiation was performed in various processing gas atmospheres as a function of processing variables showing the influence of the heat and pressure load onto the precise geometric structures. Among effective material removal and reducing of debris in the surrounding of the generated structures the achievable surface roughness of microstructured ceramics are investigated, determining not only the dependence on overlap and fluence but also the influence of the properties of the processing gas atmosphere. 3d microstructures are produced by scanning and turning the focused laser beam onto the material surface. Structures < 100 mum and surface roughness < 1 mum require an overlap < 0.8 independent of the type of processing gas
ΠΡΠ΅Π½ΠΊΠ° Π½Π΅ΡΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΠΎΠΉ ΡΠ΅ΠΏΠ»ΠΎΠΎΡΠ΄Π°ΡΠΈ ΠΏΡΠΈ ΠΏΠ»Π΅Π½ΠΎΡΠ½ΠΎΠΉ ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠΈΠΈ ΠΏΠ°ΡΠ° Π½Π° Π²Π΅ΡΡΠΈΠΊΠ°Π»ΡΠ½ΠΎΠΉ ΡΡΠ΅Π½ΠΊΠ΅
ΠΠΎΠ»ΡΡΠ΅Π½Ρ ΡΠ°ΡΡΠ΅ΡΠ½ΡΠ΅ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° ΡΠ΅ΠΏΠ»ΠΎΠΎΡΠ΄Π°ΡΠΈ, ΡΠΊΠΎΡΠΎΡΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΈ ΡΡΠ°Π½ΡΡΠ΅Π½Π΄Π΅Π½ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π΄Π»Ρ ΡΠΎΠ»ΡΠΈΠ½Ρ Π»Π°ΠΌΠΈΠ½Π°ΡΠ½ΠΎΠΉ ΠΏΠ»Π΅Π½ΠΊΠΈ ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠ°, ΡΠΏΡΠ°Π²Π΅Π΄Π»ΠΈΠ²ΡΠ΅ Π΄Π»Ρ ΡΠ΅Π³ΡΠ»ΡΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ ΡΠ΅ΠΆΠΈΠΌΠ°
Fundamental investigations of micromachining by nano- and picosecond laser radiation
The removal processes of ceramics and metals were investigated using pico- and nanosecond laser radiation produced by diode-pumped Nd:YAG lasers. The laser radiation was focused to spot diameters smaller than 10 mu m, yielding power densities up to 5 X 10(exp 12) W/CM2 . The threshold fluence for removal and the removal depth per pulse were determined for 40 pico- and 10 nanosecond laser pulses using the fundamental wavelength, the second harmonic and the third harmonic laser radiation of the laser system. For 40 ps laser pulses pump and probe investigations were used to study the interaction of intense ultrashort laser beams with matter. By this technique ultrashort processes can be photographed with a time resolution determined by the pulse length of pump and probe pulses. The measurements allow a detailed characterization of the material removal including melting, vaporization and fast resolidification as well as the feedback of the surrounding atmosphere to the processed microstruc tures. The threshold fluences for material removal and the removal rates per pulse were determined for Si3N4, SiC and WC as a function of laser pulse length and laser wavelength. Using picosecond laser radiation microstructures were produced in different ceramics and metals demonstrating the suitability of short laser pulses for the production of microstructures with dimensions smaller than 10 mu m and for ultra-precise removal of thin layers