14 research outputs found

    Brain activity during a working memory task after daily caffeine intake and caffeine withdrawal: a randomized double-blind placebo-controlled trial

    Full text link
    Acute caffeine intake has been found to increase working memory (WM)-related brain activity in healthy adults without improving behavioral performances. The impact of daily caffeine intake-a ritual shared by 80% of the population worldwide-and of its discontinuation on working memory and its neural correlates remained unknown. In this double-blind, randomized, crossover study, we examined working memory functions in 20 young healthy non-smokers (age: 26.4 ± 4.0 years; body mass index: 22.7 ± 1.4 kg/m2^{2}; and habitual caffeine intake: 474.1 ± 107.5 mg/day) in a 10-day caffeine (150 mg × 3 times/day), a 10-day placebo (3 times/day), and a withdrawal condition (9-day caffeine followed by 1-day placebo). Throughout the 10th day of each condition, participants performed four times a working memory task (N-Back, comprising 3- and 0-back), and task-related blood-oxygen-level-dependent (BOLD) activity was measured in the last session with functional magnetic resonance imaging. Compared to placebo, participants showed a higher error rate and a longer reaction time in 3- against 0-back trials in the caffeine condition; also, in the withdrawal condition we observed a higher error rate compared to placebo. However, task-related BOLD activity, i.e., an increased attention network and decreased default mode network activity in 3- versus 0-back, did not show significant differences among three conditions. Interestingly, irrespective of 3- or 0-back, BOLD activity was reduced in the right hippocampus in the caffeine condition compared to placebo. Adding to the earlier evidence showing increasing cerebral metabolic demands for WM function after acute caffeine intake, our data suggest that such demands might be impeded over daily intake and therefore result in a worse performance. Finally, the reduced hippocampal activity may reflect caffeine-associated hippocampal grey matter plasticity reported in the previous analysis. The findings of this study reveal an adapted neurocognitive response to daily caffeine exposure and highlight the importance of classifying impacts of caffeine on clinical and healthy populations

    Self-reported life-space mobility in the first year after ischemic stroke: longitudinal findings from the MOBITEC-Stroke project

    Get PDF
    Background Life-space mobility is defined as the size of the area in which a person moves about within a specified period of time. Our study aimed to characterize life-space mobility, identify factors associated with its course, and detect typical trajectories in the first year after ischemic stroke. Methods MOBITEC-Stroke (ISRCTN85999967; 13/08/2020) was a cohort study with assessments performed 3, 6, 9 and 12 months after stroke onset. We applied linear mixed effects models (LMMs) with life-space mobility (Life-Space Assessment; LSA) as outcome and time point, sex, age, pre-stroke mobility limitation, stroke severity (National Institutes of Health Stroke Scale; NIHSS), modified Rankin Scale, comorbidities, neighborhood characteristics, availability of a car, Falls Efficacy Scale-International (FES-I), and lower extremity physical function (log-transformed timed up-and-go; TUG) as independent variables. We elucidated typical trajectories of LSA by latent class growth analysis (LCGA) and performed univariate tests for differences between classes. Results In 59 participants (mean age 71.6, SD 10.0 years; 33.9% women), mean LSA at 3 months was 69.3 (SD 27.3). LMMs revealed evidence (p ≤ 0.05) that pre-stroke mobility limitation, NIHSS, comorbidities, and FES-I were independently associated with the course of LSA; there was no evidence for a significant effect of time point. LCGA revealed three classes: “low stable”, “average stable”, and “high increasing”. Classes differed with regard to LSA starting value, pre-stroke mobility limitation, FES-I, and log-transformed TUG time. Conclusion Routinely assessing LSA starting value, pre-stroke mobility limitation, and FES-I may help clinicians identify patients at increased risk of failure to improve LSA

    Daily Caffeine Intake Induces Concentration-Dependent Medial Temporal Plasticity in Humans: A Multimodal Double-Blind Randomized Controlled Trial

    Get PDF
    Caffeine is commonly used to combat high sleep pressure on a daily basis. However, interference with sleep-wake regulation could disturb neural homeostasis and insufficient sleep could lead to alterations in human gray matter. Hence, in this double-blind, randomized, cross-over study, we examined the impact of 10-day caffeine (3 Ă— 150 mg/day) on human gray matter volumes (GMVs) and cerebral blood flow (CBF) by fMRI MP-RAGE and arterial spin-labeling sequences in 20 habitual caffeine consumers, compared with 10-day placebo (3 Ă— 150 mg/day). Sleep pressure was quantified by electroencephalographic slow-wave activity (SWA) in the previous nighttime sleep. Nonparametric voxel-based analyses revealed a significant reduction in GMV in the medial temporal lobe (mTL) after 10 days of caffeine intake compared with 10 days of placebo, voxel-wisely adjusted for CBF considering the decreased perfusion after caffeine intake compared with placebo. Larger GMV reductions were associated with higher individual concentrations of caffeine and paraxanthine. Sleep SWA was, however, neither different between conditions nor associated with caffeine-induced GMV reductions. Therefore, the data do not suggest a link between sleep depth during daily caffeine intake and changes in brain morphology. In conclusion, daily caffeine intake might induce neural plasticity in the mTL depending on individual metabolic processes

    Daily Caffeine Intake Induces Concentration-Dependent Medial Temporal Plasticity in Humans: A Multimodal Double-Blind Randomized Controlled Trial

    Full text link
    Caffeine is commonly used to combat high sleep pressure on a daily basis. However, interference with sleep–wake regulation could disturb neural homeostasis and insufficient sleep could lead to alterations in human gray matter. Hence, in this double-blind, randomized, cross-over study, we examined the impact of 10-day caffeine (3 × 150 mg/day) on human gray matter volumes (GMVs) and cerebral blood flow (CBF) by fMRI MP-RAGE and arterial spin-labeling sequences in 20 habitual caffeine consumers, compared with 10-day placebo (3 × 150 mg/day). Sleep pressure was quantified by electroencephalographic slow-wave activity (SWA) in the previous nighttime sleep. Nonparametric voxel-based analyses revealed a significant reduction in GMV in the medial temporal lobe (mTL) after 10 days of caffeine intake compared with 10 days of placebo, voxel-wisely adjusted for CBF considering the decreased perfusion after caffeine intake compared with placebo. Larger GMV reductions were associated with higher individual concentrations of caffeine and paraxanthine. Sleep SWA was, however, neither different between conditions nor associated with caffeine-induced GMV reductions. Therefore, the data do not suggest a link between sleep depth during daily caffeine intake and changes in brain morphology. In conclusion, daily caffeine intake might induce neural plasticity in the mTL depending on individual metabolic processes

    The influence of daily daytime caffeine intake on human sleep-wake regulation

    No full text
    Caffeine is the most widely consumed natural stimulant in history. While caffeine is commonly used to mitigate sleepiness and to boost performance, it is intentionally avoided to prevent adverse consequences on nocturnal sleep. The latter has been particularly investigated under conditions of acute evening intake. Sleep disrupting effects are mainly attributed to caffeine’s impact on the homeostatic component of sleep-wake regulation as caffeine antagonizes the sleep factor adenosine. This results in delayed sleep onset and superficial sleep. Furthermore, evidence accumulates that acute caffeine intake in the evening impacts also on the circadian axis of sleep-wake regulation by reducing and delaying melatonin secretion, which is the primary endogenous marker of the internal timekeeping system. The overarching aim of the present thesis was to investigate whether these caffeine-induced alterations in the homeostatic and circadian sleep-wake features can also be detected under chronic exposure to caffeine timed to morning and afternoon hours, which presents a common intake pattern in coffee drinkers. Twenty male young habitual caffeine consumers participated in a double-blind, crossover study comprising a placebo (3 x placebo daily), a caffeine (3 x 150 mg caffeine daily), and a withdrawal (3 x 150 mg caffeine for eight days then change to placebo) condition, each lasting 11 days. After nine days of continuous treatment, volunteers were studied during a 43-h laboratory part under strictly controlled conditions. During scheduled wakefulness, we regularly assessed sleepiness, vigilance performance, and circadian hormonal markers (i.e., melatonin and cortisol) while polysomnography was recorded during scheduled sleep episodes at different times of the day to quantify sleep structure and intensity. First, we were interested whether daily caffeine intake in the morning and afternoon hours disrupts nighttime sleep structure and intensity, indexed as reduced slow-wave sleep (SWS) duration and decreased slow-wave activity (SWA; 0.75-4.5 Hz). Surprisingly, neither daytime caffeine consumption nor its acute cessation strongly impaired nighttime sleep architecture or subjective sleep quality in comparison to placebo. Nevertheless, during both caffeine and withdrawal conditions spectral power density in the sigma frequencies (12-16 Hz) was reduced, starting 8 and 15 hours after the last caffeine intake in the caffeine and withdrawal condition, respectively. Opposite to the reported higher sigma power after acute caffeine intake in other studies, the observed reduction in the sigma frequencies might point to early signs of caffeine withdrawal which occur as soon as regular caffeine intake is stopped. Second, we investigated whether daily daytime caffeine intake impacts on circadian hormonal rhythms and wake-promotion as well as waking performance. Interestingly, our results indicate that habitual caffeine consumption in the morning and afternoon hours does not strongly affect the diurnal secretion of melatonin and cortisol nor enhances circadian wake-promotion in the evening. Moreover, in contrast to the common perception of the stimulating properties of caffeine, such a common intake pattern did not go along with clear-cut benefits in sleepiness or vigilance performance when comparing it to the placebo condition. However, the abrupt cessation from caffeine was associated with increased subjective sleepiness, worse vigilance performance, and increased sleep pressure in the evening as indexed by shortened sleep latency, increased total sleep time, and longer SWS. Together, these findings suggest an adaptation after repeated intake, presumably in the homeostatic aspect of sleep-wake regulation, which manifests itself as soon as chronic caffeine intake is ceased. In contrast to previous studies, we did not find evidence for circadian phase shifts. In a last step, we explored the impact of daily caffeine intake and its acute cessation on circadian-regulated rapid eye movement (REM) sleep promotion in a sleep episode timed to the morning hours. Similar to nighttime sleep, total sleep time, and sleep architecture at this time of day were not strongly affected by caffeine or its withdrawal. Nonetheless, after daily daytime caffeine intake it took volunteers longer to enter REM sleep, its accumulation was slower, and subjective quality of awakening was worse compared to continuous placebo intake. As the latter might be counteracted in turn by caffeine intake, it might encourage caffeine consumption particularly in people who shift their sleep to morning or daytime hours which often occurs in shift-workers. Taken together, we have first evidence that repeated daytime caffeine intake in the morning and afternoon hours does not strongly disrupt nocturnal sleep nor hormonal markers of the circadian timing system such as the diurnal secretion of melatonin and cortisol. However, daily daytime caffeine intake might still weaken the circadian sleep signal under conditions of strong circadian REM sleep promotion. Moreover, the daily exposure to caffeine bears the risk of developing withdrawal symptoms as early as 8 hours after its last intake, such as increased sleepiness, worse performance, and subtle changes in nighttime sleep. Together these withdrawal-induced alterations point to changes primarily in the homeostatic component of sleep-wake regulation and might be attributed to differences in adenosine signaling. The circadian timekeeping system, however, stays rather stable under conditions of daily daytime caffeine intake. In summary, this thesis provides novel insights into the consequences of daily presence and nightly abstinence of the world’s most popular psychoactive substance on homeostatic and circadian measures of sleep-wake regulation

    The impact of daily caffeine intake on nighttime sleep in young adult men

    Full text link
    Acute caffeine intake can delay sleep initiation and reduce sleep intensity, particularly when consumed in the evening. However, it is not clear whether these sleep disturbances disappear when caffeine is continuously consumed during daytime, which is common for most coffee drinkers. To address this question, we investigated the sleep of twenty male young habitual caffeine consumers during a double-blind, randomized, crossover study including three 10-day conditions: caffeine (3 × 150 mg caffeine daily), withdrawal (3 × 150 mg caffeine for 8 days, then switch to placebo), and placebo (3 × placebo daily). After 9 days of continuous treatment, electroencephalographically (EEG)-derived sleep structure and intensity were recorded during a scheduled 8-h nighttime sleep episode starting 8 (caffeine condition) and 15 h (withdrawal condition) after the last caffeine intake. Upon scheduled wake-up time, subjective sleep quality and caffeine withdrawal symptoms were assessed. Unexpectedly, neither polysomnography-derived total sleep time, sleep latency, sleep architecture nor subjective sleep quality differed among placebo, caffeine, and withdrawal conditions. Nevertheless, EEG power density in the sigma frequencies (12–16 Hz) during non-rapid eye movement sleep was reduced in both caffeine and withdrawal conditions when compared to placebo. These results indicate that daily caffeine intake in the morning and afternoon hours does not strongly impair nighttime sleep structure nor subjective sleep quality in healthy good sleepers who regularly consume caffeine. The reduced EEG power density in the sigma range might represent early signs of overnight withdrawal from the continuous presence of the stimulant during the day

    Caffeine-dependent changes of sleep-wake regulation: Evidence for adaptation after repeated intake

    Get PDF
    Background: Circadian and sleep-homeostatic mechanisms regulate timing and quality of wakefulness. To enhance wakefulness, daily consumption of caffeine in the morning and afternoon is highly common. However, the effects of such a regular intake pattern on circadian sleep-wake regulation are unknown. Thus, we investigated if daily daytime caffeine intake and caffeine withdrawal affect circadian rhythms and wake-promotion in habitual consumers. Methods: Twenty male young volunteers participated in a randomised, double-blind, within-subject study with three conditions: i) caffeine (150 mg 3 x daily for 10 days), ii) placebo (3 x daily for 10 days) and iii) withdrawal (150 mg caffeine 3 x daily for eight days, followed by a switch to placebo for two days). Starting on day nine of treatment, salivary melatonin and cortisol, evening nap sleep as well as sleepiness and vigilance performance throughout day and night were quantified during 43 h in an in-laboratory, light and posture-controlled protocol. Results: Neither the time course of melatonin (i.e. onset, amplitude or area under the curve) nor the time course of cortisol was significantly affected by caffeine or withdrawal. During withdrawal, however, volunteers reported increased sleepiness, showed more attentional lapses as well as polysomnography-derived markers of elevated sleep propensity in the late evening compared to both placebo and caffeine conditions. Conclusions: The typical pattern of caffeine intake with consumption in both the morning and afternoon hours may not necessarily result in a circadian phase shift in the evening nor lead to clear-cut benefits in alertness. The time-of-day independent effects of caffeine withdrawal on evening nap sleep, sleepiness and performance suggest an adaptation to the substance, presumably in the homeostatic aspect of sleep-wake regulation

    Regular Caffeine Intake Delays REM Sleep Promotion and Attenuates Sleep Quality in Healthy Men

    Full text link
    Acute caffeine intake can attenuate homeostatic sleep pressure and worsen sleep quality. Caffeine intake—particularly in high doses and close to bedtime—may also affect circadian-regulated rapid eye movement (REM) sleep promotion, an important determinant of subjective sleep quality. However, it is not known whether such changes persist under chronic caffeine consumption during daytime. Twenty male caffeine consumers (26.4 ± 4 years old, habitual caffeine intake 478.1 ± 102.8 mg/day) participated in a double-blind crossover study. Each volunteer completed a caffeine (3 × 150 mg caffeine daily for 10 days), a withdrawal (3 × 150 mg caffeine for 8 days then placebo), and a placebo condition. After 10 days of controlled intake and a fixed sleep-wake cycle, we recorded electroencephalography for 8 h starting 5 h after habitual bedtime (i.e., start on average at 04:22 h which is around the peak of circadian REM sleep promotion). A 60-min evening nap preceded each sleep episode and reduced high sleep pressure levels. While total sleep time and sleep architecture did not significantly differ between the three conditions, REM sleep latency was longer after daily caffeine intake compared with both placebo and withdrawal. Moreover, the accumulation of REM sleep proportion was delayed, and volunteers reported more difficulties with awakening after sleep and feeling more tired upon wake-up in the caffeine condition compared with placebo. Our data indicate that besides acute intake, also regular daytime caffeine intake affects REM sleep regulation in men, such that it delays circadian REM sleep promotion when compared with placebo. Moreover, the observed caffeine-induced deterioration in the quality of awakening may suggest a potential motive to reinstate caffeine intake after sleep

    Brain activity during a working memory task after daily caffeine intake and caffeine withdrawal: a randomized double-blind placebo-controlled trial

    No full text
    Abstract Acute caffeine intake has been found to increase working memory (WM)-related brain activity in healthy adults without improving behavioral performances. The impact of daily caffeine intake—a ritual shared by 80% of the population worldwide—and of its discontinuation on working memory and its neural correlates remained unknown. In this double-blind, randomized, crossover study, we examined working memory functions in 20 young healthy non-smokers (age: 26.4 ± 4.0 years; body mass index: 22.7 ± 1.4 kg/m2; and habitual caffeine intake: 474.1 ± 107.5 mg/day) in a 10-day caffeine (150 mg × 3 times/day), a 10-day placebo (3 times/day), and a withdrawal condition (9-day caffeine followed by 1-day placebo). Throughout the 10th day of each condition, participants performed four times a working memory task (N-Back, comprising 3- and 0-back), and task-related blood-oxygen-level-dependent (BOLD) activity was measured in the last session with functional magnetic resonance imaging. Compared to placebo, participants showed a higher error rate and a longer reaction time in 3- against 0-back trials in the caffeine condition; also, in the withdrawal condition we observed a higher error rate compared to placebo. However, task-related BOLD activity, i.e., an increased attention network and decreased default mode network activity in 3- versus 0-back, did not show significant differences among three conditions. Interestingly, irrespective of 3- or 0-back, BOLD activity was reduced in the right hippocampus in the caffeine condition compared to placebo. Adding to the earlier evidence showing increasing cerebral metabolic demands for WM function after acute caffeine intake, our data suggest that such demands might be impeded over daily intake and therefore result in a worse performance. Finally, the reduced hippocampal activity may reflect caffeine-associated hippocampal grey matter plasticity reported in the previous analysis. The findings of this study reveal an adapted neurocognitive response to daily caffeine exposure and highlight the importance of classifying impacts of caffeine on clinical and healthy populations

    Time to Recover From Daily Caffeine Intake

    Full text link
    Caffeine elicits widespread effects in the central nervous system and is the most frequently consumed psychostimulant worldwide. First evidence indicates that, during daily intake, the elimination of caffeine may slow down, and the primary metabolite, paraxanthine, may accumulate. The neural impact of such adaptions is virtually unexplored. In this report, we leveraged the data of a laboratory study with N = 20 participants and three within-subject conditions: caffeine (150 mg caffeine Ă— 3/day Ă— 10 days), placebo (150 mg mannitol Ă— 3/day Ă— 10 days), and acute caffeine deprivation (caffeine Ă— 9 days, afterward placebo Ă— 1 day). On day 10, we determined the course of salivary caffeine and paraxanthine using liquid chromatography-mass spectrometry coupled with tandem mass spectrometry. We assessed gray matter (GM) intensity and cerebral blood flow (CBF) after acute caffeine deprivation as compared to changes in the caffeine condition from our previous report. The results indicated that levels of paraxanthine and caffeine remained high and were carried overnight during daily intake, and that the levels of paraxanthine remained elevated after 24 h of caffeine deprivation compared to placebo. After 36 h of caffeine deprivation, the previously reported caffeine-induced GM reduction was partially mitigated, while CBF was elevated compared to placebo. Our findings unveil that conventional daily caffeine intake does not provide sufficient time to clear up psychoactive compounds and restore cerebral responses, even after 36 h of abstinence. They also suggest investigating the consequences of a paraxanthine accumulation during daily caffeine intake
    corecore