8,991 research outputs found

    Ultrahigh Purcell factor in low-threshold nanolaser based on asymmetric hybrid plasmonic cavity

    Get PDF
    A low-threshold nanolaser with all three dimensions at the subwavelength scale is proposed and investigated. The nanolaser is constructed based on an asymmetric hybrid plasmonic F-P cavity with Ag-coated end facets. Lasing characteristics are calculated using finite element method at the wavelength of 1550 nm. The results show that owing to the low modal loss, large modal confinement factor of the asymmetric plasmonic cavity structure, in conjunction with the high reflectivity of the Ag reflectors, a minimum threshold gain of 240 cm−1 is predicted. Furthermore, the Purcell factor as large as 2518 is obtained with optimized structure parameters to enhance rates of spontaneous and stimulated emission

    Study on the Rheological Properties and Constitutive Model of Shenzhen Mucky Soft Soil

    Get PDF
    In order to obtain the basic parameters of numerical analysis about the time-space effect of the deformation occurring in Shenzhen deep soft-soil foundation pit, a series of triaxial consolidated-undrained shear rheology tests on the peripheral mucky soft soil of a deep foundation pit support were performed under different confining pressures. The relations between the axial strain of the soil and time, as well as between the pore-water pressure of the soil and time, were achieved, meanwhile on the basis of analyzing the rheological properties of the soil, the relevant rheological models were built. Analysis results were proved that the rheology of Shenzhen mucky soft soil was generally viscous, elastic, and plastic, and had a low yield stress between 90 and 150 kPa. The increase in pore-water pressure made the rheological time effect of the mucky soft soil more remarkable. Thus, the drainage performance in practical engineering should be improved to its maximum possibility extent to decrease the soft-soil rheological deformation. Lastly, a six-component extended Burgers model was employed to fit the test results and the parameters of the model were determined. Findings showed that the extended Burgers model could satisfactorily simulate the various rheological stages of the mucky soft soil. The constitutive model and the determination of its parameters can be served as a foundation for the time-space effect analysis on the deformation of deep soft-soil foundation pits

    Electrochemical performance of Mo2C@PtRu synthesized by electrochemical deposition method on methanol oxidation

    Get PDF
    The electrodeposition of Platinum and Ruthenium nanoparticles into Molybdenum carbide/ glassy carbon electrodes and their catalytic activity for the oxidatlon of methanol are described. These Mo2C@PtRu electrodes exhibit good activity with respect to the catalytic oxidation of methanol. The electrodes exhibited excellent long term stabilty in the acidic methanol solutions

    Individual position diversity in dependence socioeconomic networks increases economic output

    Full text link
    The availability of big data recorded from massively multiplayer online role-playing games (MMORPGs) allows us to gain a deeper understanding of the potential connection between individuals' network positions and their economic outputs. We use a statistical filtering method to construct dependence networks from weighted friendship networks of individuals. We investigate the 30 distinct motif positions in the 13 directed triadic motifs which represent microscopic dependences among individuals. Based on the structural similarity of motif positions, we further classify individuals into different groups. The node position diversity of individuals is found to be positively correlated with their economic outputs. We also find that the economic outputs of leaf nodes are significantly lower than that of the other nodes in the same motif. Our findings shed light on understanding the influence of network structure on economic activities and outputs in socioeconomic system.Comment: 19 pages, 5 figure

    An efficient nonlinear iteration scheme for nonlinear parabolic–hyperbolic system

    Get PDF
    AbstractA nonlinear iteration method named the Picard–Newton iteration is studied for a two-dimensional nonlinear coupled parabolic–hyperbolic system. It serves as an efficient method to solve a nonlinear discrete scheme with second spatial and temporal accuracy. The nonlinear iteration scheme is constructed with a linearization–discretization approach through discretizing the linearized systems of the original nonlinear partial differential equations. It can be viewed as an improved Picard iteration, and can accelerate convergence over the standard Picard iteration. Moreover, the discretization with second-order accuracy in both spatial and temporal variants is introduced to get the Picard–Newton iteration scheme. By using the energy estimate and inductive hypothesis reasoning, the difficulties arising from the nonlinearity and the coupling of different equation types are overcome. It follows that the rigorous theoretical analysis on the approximation of the solution of the Picard–Newton iteration scheme to the solution of the original continuous problem is obtained, which is different from the traditional error estimate that usually estimates the error between the solution of the nonlinear discrete scheme and the solution of the original problem. Moreover, such approximation is independent of the iteration number. Numerical experiments verify the theoretical result, and show that the Picard–Newton iteration scheme with second-order spatial and temporal accuracy is more accurate and efficient than that of first-order temporal accuracy
    • 

    corecore