12,790 research outputs found

    Exothermic isospin-violating dark matter after SuperCDMS and CDEX

    Get PDF
    We show that exothermic isospin-violating dark matter (IVDM) can make the results of the latest CDMS-Si experiment consistent with recent null experiments, such as XENON10, XENON100, LUX, CDEX, and SuperCDMS, whereas for the CoGeNT experiment, a strong tension still persists. For CDMS-Si, separate exothermic dark matter or isospin-violating dark matter cannot fully ameliorate the tensions among these experiments; the tension disappears only if exothermic scattering is combined with an isospin-violating effect of f_n/f_p=-0.7. For such exothermic IVDM to exist, at least a new vector gauge boson (dark photon or dark Z') that connects SM quarks to Majorana-type DM particles is required.Comment: 12 pages, 6 figure

    Stringent Nucleotide Recognition by the Ribosome at the Middle Codon Position.

    Get PDF
    Accurate translation of the genetic code depends on mRNA:tRNA codon:anticodon base pairing. Here we exploit an emissive, isosteric adenosine surrogate that allows direct measurement of the kinetics of codon:anticodon University of California base formation during protein synthesis. Our results suggest that codon:anticodon base pairing is subject to tighter constraints at the middle position than at the 5'- and 3'-positions, and further suggest a sequential mechanism of formation of the three base pairs in the codon:anticodon helix

    Controllability Canonical Forms of Linear Ensemble Systems

    Full text link
    Ensemble control, an emerging research field focusing on the study of large populations of dynamical systems, has demonstrated great potential in numerous scientific and practical applications. Striking examples include pulse design for exciting spin ensembles in quantum physics, neurostimulation for relieving neurological disorder symptoms, and path planning for steering robot swarms. However, the control targets in such applications are generally large-scale complex and severely underactuated ensemble systems, research into which stretches the capability of techniques in classical control and dynamical systems theory to the very limit. This paper then devotes to advancing our knowledge about controllability of linear ensemble systems by integrating tools in modern algebra into the technique of separating points developed in our recent work. In particular, we give an algebraic interpretation of the dynamics of linear systems in terms of actions of polynomials on vector spaces, and this leads to the development of the functional canonical form of matrix-valued functions, which can also be viewed as the generalization of the rational canonical form of matrices in linear algebra. Then, leveraging the technique of separating points, we achieve a necessary and sufficient characterization of uniform ensemble controllability for time-invariant linear ensemble systems as the ensemble controllability canonical form, in which the system and control matrices are in the functional canonical and block diagonal form, respectively. This work successfully launches a new research scheme by adopting and tailoring finite-dimensional methods to tackle control problems involving infinite-dimensional ensemble systems, and lays a solid foundation for a more inclusive ensemble control theory targeting a much broader spectrum of control and learning problems in both scientific research and practice
    • …
    corecore