11,783 research outputs found

    BayesNAS: A Bayesian Approach for Neural Architecture Search

    Get PDF
    One-Shot Neural Architecture Search (NAS) is a promising method to significantly reduce search time without any separate training. It can be treated as a Network Compression problem on the architecture parameters from an over-parameterized network. However, there are two issues associated with most one-shot NAS methods. First, dependencies between a node and its predecessors and successors are often disregarded which result in improper treatment over zero operations. Second, architecture parameters pruning based on their magnitude is questionable. In this paper, we employ the classic Bayesian learning approach to alleviate these two issues by modeling architecture parameters using hierarchical automatic relevance determination (HARD) priors. Unlike other NAS methods, we train the over-parameterized network for only one epoch then update the architecture. Impressively, this enabled us to find the architecture on CIFAR-10 within only 0.2 GPU days using a single GPU. Competitive performance can be also achieved by transferring to ImageNet. As a byproduct, our approach can be applied directly to compress convolutional neural networks by enforcing structural sparsity which achieves extremely sparse networks without accuracy deterioration.Comment: International Conference on Machine Learning 201

    Critical fluctuations in proteins native states

    Get PDF
    We study a large data set of protein structure ensembles of very diverse sizes determined by nuclear magnetic resonance. By examining the distance-dependent correlations in the displacement of residues pairs and conducting finite size scaling analysis it was found that the correlations and susceptibility behave as in systems near a critical point implying that, at the native state, the motion of each amino acid residue is felt by every other residue up to the size of the protein molecule. Furthermore certain protein's shapes corresponding to maximum susceptibility were found to be more probable than others. Overall the results suggest that the protein's native state is critical, implying that despite being posed near the minimum of the energy landscape, they still preserve their dynamic flexibility
    corecore