58,565 research outputs found

    SurfelWarp: Efficient Non-Volumetric Single View Dynamic Reconstruction

    Full text link
    We contribute a dense SLAM system that takes a live stream of depth images as input and reconstructs non-rigid deforming scenes in real time, without templates or prior models. In contrast to existing approaches, we do not maintain any volumetric data structures, such as truncated signed distance function (TSDF) fields or deformation fields, which are performance and memory intensive. Our system works with a flat point (surfel) based representation of geometry, which can be directly acquired from commodity depth sensors. Standard graphics pipelines and general purpose GPU (GPGPU) computing are leveraged for all central operations: i.e., nearest neighbor maintenance, non-rigid deformation field estimation and fusion of depth measurements. Our pipeline inherently avoids expensive volumetric operations such as marching cubes, volumetric fusion and dense deformation field update, leading to significantly improved performance. Furthermore, the explicit and flexible surfel based geometry representation enables efficient tackling of topology changes and tracking failures, which makes our reconstructions consistent with updated depth observations. Our system allows robots to maintain a scene description with non-rigidly deformed objects that potentially enables interactions with dynamic working environments.Comment: RSS 2018. The video and source code are available on https://sites.google.com/view/surfelwarp/hom

    Hydrogen enhanced thermal fatigue of y-titanium aluminide

    Get PDF
    A study of hydrogen enhanced thermal fatigue cracking was carried out for a gamma-based Ti-48Al-2Cr alloy by cycling between room temperature and 750 or 900 °C. The results showed that hydrogen can severely attack the gamma alloy, with resulting lifetimes as low as three cycles, while no failures were observed in helium for test durations of over 4000 cycles. The severity of hydrogen attack strongly depends on the upper limit of the temperature cycled and the cleanliness of the hydrogen. Specifically, the large scatter of life times at 750 °C (ranging from 36 to more than 3000 cycles) have resulted from the competition between surface oxidation and hydrogen attack. The results suggest that an understanding of the combined actions of thermal cycling and hydrogen degradation is needed for assessing materials for high temperature applications in hydrogen

    Predominant contribution of cis-regulatory divergence in the evolution of mouse alternative splicing

    Get PDF
    Divergence of alternative splicing represents one of the major driving forces to shape phenotypic diversity during evolution. However, the extent to which these divergences could be explained by the evolving cis-regulatory versus trans-acting factors remains unresolved. To globally investigate the relative contributions of the two factors for the first time in mammals, we measured splicing difference between C57BL/6J and SPRET/EiJ mouse strains and allele-specific splicing pattern in their F1 hybrid. Out of 11,818 alternative splicing events expressed in the cultured fibroblast cells, we identified 796 with significant difference between the parental strains. After integrating allele-specific data from F1 hybrid, we demonstrated that these events could be predominately attributed to cis-regulatory variants, including those residing at and beyond canonical splicing sites. Contrary to previous observations in Drosophila, such predominant contribution was consistently observed across different types of alternative splicing. Further analysis of liver tissues from the same mouse strains and reanalysis of published datasets on other strains showed similar trends, implying in general the predominant contribution of cis-regulatory changes in the evolution of mouse alternative splicing
    corecore