10,046 research outputs found

    Soft Methodology for Cost-and-error Sensitive Classification

    Full text link
    Many real-world data mining applications need varying cost for different types of classification errors and thus call for cost-sensitive classification algorithms. Existing algorithms for cost-sensitive classification are successful in terms of minimizing the cost, but can result in a high error rate as the trade-off. The high error rate holds back the practical use of those algorithms. In this paper, we propose a novel cost-sensitive classification methodology that takes both the cost and the error rate into account. The methodology, called soft cost-sensitive classification, is established from a multicriteria optimization problem of the cost and the error rate, and can be viewed as regularizing cost-sensitive classification with the error rate. The simple methodology allows immediate improvements of existing cost-sensitive classification algorithms. Experiments on the benchmark and the real-world data sets show that our proposed methodology indeed achieves lower test error rates and similar (sometimes lower) test costs than existing cost-sensitive classification algorithms. We also demonstrate that the methodology can be extended for considering the weighted error rate instead of the original error rate. This extension is useful for tackling unbalanced classification problems.Comment: A shorter version appeared in KDD '1

    Controlling the Intrinsic Josephson Junction Number in a Bi2Sr2CaCu2O8+δ\mathbf{Bi_2Sr_2CaCu_2O_{8+\delta}} Mesa

    Full text link
    In fabricating Bi2Sr2CaCu2O8+δ\mathrm{Bi_2Sr_2CaCu_2O_{8+\delta}} intrinsic Josephson junctions in 4-terminal mesa structures, we modify the conventional fabrication process by markedly reducing the etching rates of argon ion milling. As a result, the junction number in a stack can be controlled quite satisfactorily as long as we carefully adjust those factors such as the etching time and the thickness of the evaporated layers. The error in the junction number is within ±1\pm 1. By additional ion etching if necessary, we can controllably decrease the junction number to a rather small value, and even a single intrinsic Josephson junction can be produced.Comment: to bu published in Jpn. J. Appl. Phys., 43(7A) 200

    Sandy Soil Improvement through Microbially Induced Calcite Precipitation (MICP) by Immersion

    Get PDF
    The goal of this article is to develop an immersion method to improve the microbially induced calcite precipitation (MICP) treated samples. A batch reactor was assembled to immerse soil samples into cementation media. The cementation media can freely diffuse into the soil samples in the batch reactor instead of cementation media being injected. A full contact flexible mold, a rigid full contact mold, and a cored brick mold were used to prepare different soil sample holders. Synthetic fibers and natural fibers were selected to reinforce the MICP-treated soil samples. The precipitated CaCO3 in different areas of the MICP-treated samples was measured. The CaCO3 distribution results demonstrated that the precipitated CaCO3 was distributed uniformly in the soil sample by the immersion method

    Strain Sensor of Carbon Nanotubes in Microscale: From Model to Metrology

    Get PDF
    A strain sensor composed of carbon nanotubes with Raman spectroscopy can achieve measurement of the three in-plane strain components in microscale. Based on previous work on the mathematic model of carbon nanotube strain sensors, this paper presents a detailed study on the optimization, diversification, and standardization of a CNT strain sensor from the viewpoint of metrology. A new miniaccessory for polarization control is designed, and two different preparing methods for CNT films as sensing media are introduced to provide diversified choices for applications. Then, the standard procedure of creating CNT strain sensors is proposed. Application experiments confirmed the effectiveness of the above improvement, which is helpful in developing this method for convenient metrology

    Robust Preparation of Many-body Ground States in Jaynes-Cummings Lattices

    Full text link
    Strongly-correlated polaritons in Jaynes-Cummings (JC) lattices can exhibit quantum phase transitions between the Mott-insulating and superfluid phases at integer fillings. The prerequisite to observe such phase transitions is to pump polariton excitations into a JC lattice and prepare them into appropriate ground states. Despite previous efforts, it is still challenging to generate many-body states with high accuracy. Here we present an approach for the robust preparation of many-body ground states of polaritons in finite-sized JC lattices by optimized nonlinear ramping. We apply a Landau-Zener type of estimation to this finite-sized system and derive the optimal ramping index for selected ramping trajectories, which can greatly improve the fidelity of the prepared states. With numerical simulation, we show that by choosing an appropriate ramping trajectory, the fidelity in this approach can remain close to unity in almost the entire parameter space. This approach can shed light on high-fidelity state preparation in quantum simulators and advance the implementation of quantum simulation with practical devices.Comment: 9 pages, 7 figure
    • …
    corecore