6,081 research outputs found

    OPTIMISATION OF HULL FORM OF OCEAN-GOING TRAWLER

    Get PDF
    This paper proposes a method for optimising the hull form of ocean-going trawlers to decrease resistance and consequently reduce the energy consumption. The entire optimisation process was managed by the integration of computer-aided design and computational fluid dynamics (CFD) in the CAESES software. Resistance was simulated using the CFD solver and STAR-CCM+. The ocean-going trawler was investigated under two main navigation conditions: trawling and design. Under the trawling condition, the main hull of the trawler was modified using the Lackenby method and optimised by NSGA-II algorithm and Sobol + Tsearch algorithm. Under the design condition, the bulbous bow was changed using the free-form deformation method, and the trawler was optimised by NSGA-Ⅱ. The best hull form is obtained by comparing the ship resistance under various design schemes. Towing experiments were conducted to measure the navigation resistance of trawlers before and after optimisation, thus verifying the reliability of the optimisation results. The results show that the proposed optimisation method can effectively reduce the resistance of trawlers under the two navigation conditions

    A novel PCR strategy for high-efficiency, automated site-directed mutagenesis

    Get PDF
    We have developed a novel three-primer, one-step PCR-based method for site-directed mutagenesis. This method takes advantage of the fact that template plasmid DNA cannot be efficiently denatured at its reannealing temperature (T(ra)), which is otherwise a troublesome problem in regular PCR. Two flanking primers and one mutagenic primer with different melting temperatures (T(m)) are used together in a single PCR tube continuously without any intervention. A single-stranded mutagenic DNA (smDNA) is synthesized utilizing the high T(m) mutagenic primer at a high annealing temperature, which prevents the priming of the low T(m) primers (i.e. the two flanking primers). A megaprimer is then produced using this smDNA as the template at a denaturing temperature that prevents wild-type template DNA activity. The desired mutant DNA is then obtained by cycling again through these first two steps, resulting in a mutagenic efficiency of 100% in all tested cases. This highly automated method not only eliminates the necessity of any intermediate manipulation and accomplishes the mutagenesis process in a single round of PCR but, most notably, enables complete success of mutagenesis. This novel method is also both cost and time efficient and fully automated

    4-(4-Bromo­phen­yl)-2,6-diphenyl­pyridine

    Get PDF
    In the title compound, C23H16BrN, the three benzene rings show a disrotatory counter-rotating arrangement around the central pyridine ring and are twisted with respect to the pyridine ring with dihedral angles of 19.56 (13), 27.54 (13) and 30.51 (13)°

    VIE-FG-FFT for Analyzing EM Scattering from Inhomogeneous Nonmagnetic Dielectric Objects

    Get PDF
    A new realization of the volume integral equation (VIE) in combination with the fast Fourier transform (FFT) is established by fitting Green’s function (FG) onto the nodes of a uniform Cartesian grid for analyzing EM scattering from inhomogeneous nonmagnetic dielectric objects. The accuracy of the proposed method is the same as that of the P-FFT and higher than that of the AIM and the IE-FFT especially when increasing the grid spacing size. Besides, the preprocessing time of the proposed method is obviously less than that of the P-FFT for inhomogeneous nonmagnetic dielectric objects. Numerical examples are provided to demonstrate the accuracy and efficiency of the proposed method

    AEG-1 participates in high glucose-induced activation of Rho kinase and epithelial–mesenchymal transition in proximal tubular epithelial cells

    Get PDF
    AbstractObjectiveTo prove whether astrocyte elevated gene-1 (AEG-1) plays a role in high glucose-stimulated Rho kinase activation and epithelial–mesenchymal transition (EMT) in human renal tubular epithelial (HK-2) cells.MethodsThe protein levels of AEG-1, alpha-smooth muscle actin, E-cadherin and MYPT1 were determined by Western blot.ResultsAEG-1 protein level was upregulated in HK-2 cells stimulated with high glucose. AEG-1 siRNA downregulated Rho kinase protein expression and blocked high glucose-induced EMT.ConclusionsOur results show that AEG-1 acts a key role in high glucose-induced activation of Rho kinase and EMT in HK-2 cells

    Electric Field Effect in Multilayer Cr2Ge2Te6: a Ferromagnetic Two-Dimensional Material

    Full text link
    The emergence of two-dimensional (2D) materials has attracted a great deal of attention due to their fascinating physical properties and potential applications for future nanoelectronic devices. Since the first isolation of graphene, a Dirac material, a large family of new functional 2D materials have been discovered and characterized, including insulating 2D boron nitride, semiconducting 2D transition metal dichalcogenides and black phosphorus, and superconducting 2D bismuth strontium calcium copper oxide, molybdenum disulphide and niobium selenide, etc. Here, we report the identification of ferromagnetic thin flakes of Cr2Ge2Te6 (CGT) with thickness down to a few nanometers, which provides a very important piece to the van der Waals structures consisting of various 2D materials. We further demonstrate the giant modulation of the channel resistance of 2D CGT devices via electric field effect. Our results illustrate the gate voltage tunability of 2D CGT and the potential of CGT, a ferromagnetic 2D material, as a new functional quantum material for applications in future nanoelectronics and spintronics.Comment: To appear in 2D Material
    • 

    corecore