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A new realization of the volume integral equation (VIE) in combination with the fast Fourier transform (FFT) is established
by fitting Green’s function (FG) onto the nodes of a uniform Cartesian grid for analyzing EM scattering from inhomogeneous
nonmagnetic dielectric objects. The accuracy of the proposed method is the same as that of the P-FFT and higher than that of the
AIM and the IE-FFT especially when increasing the grid spacing size. Besides, the preprocessing time of the proposed method
is obviously less than that of the P-FFT for inhomogeneous nonmagnetic dielectric objects. Numerical examples are provided to
demonstrate the accuracy and efficiency of the proposed method.

1. Introduction

The volume integral equation (VIE) method [1] based on the
method of moments (MoM) [2] is one of the efficient meth-
ods to analyze electromagnetic (EM) scattering from inho-
mogeneous dielectric objects. As is well known, for the tradi-
tional VIE-MoM, both the storage requirement and the com-
putational complexity of amatrix-vectormultiplicationwhen
an iterative method is applied are proportional to 𝑂(𝑁

2
),

where 𝑁 denotes the number of unknowns. Therefore, the
VIE-MoM is not suitable for the direct analysis of EM scat-
tering from electrically large and inhomogeneous dielectric
objects.

One of approaches for improving the efficiency of the
VIE-MoM is the VIE in combination with the fast Fourier
transform (FFT), and it already has several implementations,
such as the VIE-AIM [3, 4], the VIE-P-FFT [5, 6], and the
VIE-IE-FFT [7, 8], which are simply called the FFT-based
methods. These implementations are all transplanted from
the corresponding versions [9–12] for the surface integral
equation (SIE) [13]. Not long ago, a new realization, the FG-
FFT, of the SIE in combination with the FFT for the electric
field integral equation (EFIE) was proposed [14] and soon
extended to the combined field integral equation (CFIE) [15].

In this paper, the FG-FFT for the SIE will be extended to
the VIE for analyzing EM scattering from inhomogeneous
nonmagnetic dielectric objects, and resultant method is
simply called the VIE-FG-FFT. The remainder of this paper
is organized as follows. In Section 2, the VIE-FG-FFT is
presented in detail. In Section 3, some numerical examples
are provided to demonstrate the accuracy and efficiency of the
VIE-FG-FFT. Finally, the conclusion is given in Section 4. In
this paper, the time convention 𝑒

𝑗𝜔𝑡 is assumed and sup-
pressed.

2. Formulation

2.1. The Volume Integral Equation. The permittivity and per-
meability of the free space are denoted by 𝜖

0
and 𝜇

0
, respec-

tively. Let 𝑉 denote the volumetric domain occupied by an
inhomogeneous nonmagnetic dielectric object with relative
permittivity 𝜖

𝑟
and relative permeability 𝜇

𝑟
= 1 (meaning

nonmagnetic).
Let 𝐸⃗𝑖 be the incident electric field and 𝐸⃗𝑠 the scattered

electric field; then the total electric field 𝐸⃗tot can be expressed
as the sum of 𝐸⃗𝑖 and 𝐸⃗𝑠:

𝐸⃗
tot
= 𝐸⃗
𝑖
+ 𝐸⃗
𝑠
, (1)
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and the volume integral equation (VIE) on 𝑉 for the total
electric field can be rigorously expressed as [16]

𝐸⃗
tot
( ⃗𝑟) = 𝐸⃗

𝑖
( ⃗𝑟) + 𝑘

2

0
∫
𝑉

[𝜀
𝑟
( ⃗𝑟
󸀠
) − 1] 𝐸⃗

tot
( ⃗𝑟
󸀠
) ⋅ 𝐺 ( ⃗𝑟, ⃗𝑟

󸀠
) 𝑑V󸀠,

(2)

where ⃗𝑟 ∈ 𝑉 and 𝑘
0
= 𝜔√𝜇0𝜀0, which implies that

𝐸⃗
𝑠
( ⃗𝑟) = ∫

𝑉

(𝑘
2

0
+ ∇∇⋅)𝐺 ( ⃗𝑟, ⃗𝑟

󸀠
) 𝜅 ( ⃗𝑟
󸀠
)

𝐷⃗
tot
( ⃗𝑟
󸀠
)

𝜀
0

𝑑V󸀠, (3)

where 𝐷⃗tot is the electric flux density of 𝐸⃗tot and

𝜅 ( ⃗𝑟
󸀠
) =

(𝜀
𝑟
( ⃗𝑟
󸀠
) − 1)

𝜀
𝑟
( ⃗𝑟󸀠)

. (4)

Therefore, we have

𝐸⃗
𝑠
( ⃗𝑟) = 𝑘

2

0
∫
𝑉

𝐺( ⃗𝑟, ⃗𝑟
󸀠
) 𝜅 ( ⃗𝑟
󸀠
)

𝐷⃗
tot
( ⃗𝑟
󸀠
)

𝜀
0

𝑑V󸀠

− ∇∫
𝜕𝑉

𝐺( ⃗𝑟, ⃗𝑟
󸀠
) 𝜅 ( ⃗𝑟
󸀠
) [𝑛
𝜕𝑉
⋅

𝐷⃗
tot
( ⃗𝑟
󸀠
)

𝜀
0

]𝑑𝑠
󸀠

+ ∇∫
𝑉

𝐺( ⃗𝑟, ⃗𝑟
󸀠
) [𝜅 ( ⃗𝑟

󸀠
)(∇
󸀠
⋅

𝐷⃗
tot
( ⃗𝑟
󸀠
)

𝜀
0

)

+

𝐷⃗
tot
( ⃗𝑟
󸀠
)

𝜀
0

⋅ ∇
󸀠
𝜅 ( ⃗𝑟
󸀠
)] 𝑑V󸀠,

(5)

where 𝜕𝑉 is the outer boundary surface of 𝑉.
It should be pointed out that the second term in the right-

hand side of (5) cannot be ignored in the strict sense (see the
second paragraph of Section 2 in [17]). However, this term
will force one to introduce “half ” basis function, whichwill be
seen in the following.

2.2. Buiding the MoM Model. The electric flux density 𝐷⃗tot

can be chosen as the unknown function because it is con-
tinuous along the normal direction of the medium interface.
After 𝑉 is discretized by using tetrahedrons, 𝐷⃗tot

/𝜀
0
can be

expanded with the SWG functions [1]:

𝐷⃗
tot
( ⃗𝑟)

𝜀
0

=

𝑁𝐹

∑

𝑚=1

𝑥
𝐹

𝑚

⃗𝑓
𝐹

𝑚
( ⃗𝑟) +

𝑁𝐻

∑

𝑛=1

𝑥
𝐻

𝑛

⃗𝑓
𝐻

𝑛
( ⃗𝑟) , (6)

where “𝐹” and “𝐻”mean “full SWG function” and “half SWG
function,” respectively, and the total number of the basis func-
tions is𝑁 = 𝑁

𝐹
+𝑁
𝐻
. A full SWG function ⃗𝑓

𝐹

𝑛
is defined on

the union𝑉𝐹
𝑛
= 𝑉
𝐹,+

𝑛
∪𝑉
𝐹,−

𝑛
of a pair of tetrahedrons𝑉𝐹,+

𝑛
and

𝑉
𝐹,−

𝑛
that share a common face as follows:

⃗𝑓
𝐹

𝑛
( ⃗𝑟) =

{{{{{

{{{{{

{

⃗𝑓
𝐹,+

𝑛
( ⃗𝑟) =

󵄨󵄨󵄨󵄨𝑆𝑛
󵄨󵄨󵄨󵄨

3
󵄨󵄨󵄨󵄨𝑉
+

𝑛

󵄨󵄨󵄨󵄨

( ⃗𝑟 − ⃗𝑟
+

𝑛,free) , ⃗𝑟 ∈ 𝑉
𝐹,+

𝑛

⃗𝑓
𝐹,−

𝑛
( ⃗𝑟) =

󵄨󵄨󵄨󵄨𝑆𝑛
󵄨󵄨󵄨󵄨

3
󵄨󵄨󵄨󵄨𝑉
−

𝑛

󵄨󵄨󵄨󵄨

( ⃗𝑟 − ⃗𝑟
−

𝑛,free) , ⃗𝑟 ∈ 𝑉
𝐹,−

𝑛
,

(7)

VF,−
n
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Figure 1: The geometry of the SWG function.

whose geometry is shown in Figure 1, while a half SWG func-
tion ⃗𝑓

𝐻

𝑛
is defined only on a single tetrahedron 𝑉𝐻

𝑛
. For con-

venience, we use [𝑉𝐹
𝑛
] to denote the common face of𝑉𝐹,+

𝑛
and

𝑉
𝐹,−

𝑛
, as shown in Figure 1.
In fact, half SWG functions are applied only at the outer

boundary of 𝑉, and hence the number 𝑁
𝐻
is just that of the

triangular elements over 𝜕𝑉. In this paper, we have a conven-
tion that a half SWG function ⃗𝑓

𝐻

𝑛
is so defined on 𝑉𝐻

𝑛
that

⃗𝑓
𝐻

𝑛
( ⃗𝑟) ⋅ 𝑛( ⃗𝑟) = 1 when ⃗𝑟 ∈ [𝑉

𝐻

𝑛
] := 𝑉

𝐻

𝑛
∩ 𝜕𝑉.

When (6) is substituted into (1) and after the Galerkin
procedure is applied, the VIE-MoM matrix equation can be
built as follows:

𝐴𝑋 = 𝐵, (8)

where

𝐴 = [

[

(𝑎
𝐹𝐹

𝑚𝑛
)
𝑁𝐹×𝑁𝐹

(𝑎
𝐹𝐻

𝑚𝑛
)
𝑁𝐹×𝑁𝐻

(𝑎
𝐻𝐹

𝑚𝑛
)
𝑁𝐻×𝑁𝐹

(𝑎
𝐻𝐻

𝑚𝑛
)
𝑁𝐻×𝑁𝐻

]

]

;

𝐵 = [

[

(𝑏
𝐹

𝑚
)
𝑁𝐹×1

(𝑏
𝐻

𝑚
)
𝑁𝐻×1

]

]

is the incident vector;

𝑋 = [

[

(𝑥
𝐹

𝑛
)
𝑁𝐹×1

(𝑥
𝐻

𝑛
)
𝑁𝐻×1

]

]

is the unknown vector.

(9)

Note that, in our VIE-MoMmodel, the restriction of 𝜅( ⃗𝑟)
on a tetrahedral region will be considered as a constant, and
the following symbol abbreviations will be applied:

𝜅
𝐹,±

𝑛
:= 𝜅 ( ⃗𝑟) |

𝑉
𝐹,±

𝑛

, 𝜅
𝐻

𝑛
:= 𝜅 ( ⃗𝑟) |

𝑉
𝐻

𝑛

. (10)

Then the elements ofmatrix𝐴have the following expressions:

𝑎
𝐹𝐹

𝑚𝑛
= ∫
𝑉
𝐹

𝑚

⃗𝑓
𝐹

𝑚
( ⃗𝑟) ⋅ ⃗𝑓

𝐹

𝑛
( ⃗𝑟)

𝜀
𝑟
( ⃗𝑟)

𝑑V

− 𝑘
2

0
∫
𝑉
𝐹

𝑚

𝑑V ⃗𝑓
𝐹

𝑚
( ⃗𝑟) ⋅ ∫

𝑉
𝐹

𝑛

𝐺( ⃗𝑟, ⃗𝑟
󸀠
) 𝜅 ( ⃗𝑟
󸀠
) ⃗𝑓
𝐹

𝑛
( ⃗𝑟
󸀠
) 𝑑V󸀠
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+ ∫
𝑉
𝐹

𝑚

𝑑V (∇ ⋅ ⃗𝑓
𝐹

𝑚
( ⃗𝑟)) {𝐼

𝐹,(1)

𝑚𝑛
( ⃗𝑟) + 𝐼

𝐹,(2)

𝑚𝑛
( ⃗𝑟)}

:= 𝑎
𝐹𝐹,1

𝑚𝑛
− 𝑘
2

0
𝑎
𝐹𝐹,2

𝑚𝑛
+ 𝑎
𝐹𝐹,3

𝑚𝑛
,

(11)

𝑎
𝐻𝐹

𝑚𝑛
= ∫
𝑉
𝐻

𝑚

⃗𝑓
𝐻

𝑚
( ⃗𝑟) ⋅ ⃗𝑓

𝐹

𝑛
( ⃗𝑟)

𝜀
𝑟
( ⃗𝑟)

𝑑V

− 𝑘
2

0
∫
𝑉
𝐻

𝑚

𝑑V ⃗𝑓
𝐻

𝑚
( ⃗𝑟) ⋅ ∫

𝑉
𝐹

𝑛

𝐺( ⃗𝑟, ⃗𝑟
󸀠
) 𝜅 ( ⃗𝑟
󸀠
) ⃗𝑓
𝐹

𝑛
( ⃗𝑟
󸀠
) 𝑑V󸀠

+ [∫
𝑉
𝐻

𝑚

𝑑V (∇ ⋅ ⃗𝑓
𝐻

𝑚
( ⃗𝑟)) {𝐼

𝐹,(1)

𝑚𝑛
( ⃗𝑟) + 𝐼

𝐹,(2)

𝑚𝑛
( ⃗𝑟)}

−∫
[𝑉
𝐻

𝑛
]

𝑑𝑠 {𝐼
𝐹,(1)

𝑚𝑛
( ⃗𝑟) + 𝐼

𝐹,(2)

𝑚𝑛
( ⃗𝑟)}]

:= 𝑎
𝐻𝐹,1

𝑚𝑛
− 𝑘
2

0
𝑎
𝐻𝐹,2

𝑚𝑛
+ 𝑎
𝐻𝐹,3

𝑚𝑛
,

(12)

where

𝐼
𝐹,(1)

𝑚𝑛
( ⃗𝑟) = ∫

𝑉
𝐹

𝑛

𝐺( ⃗𝑟, ⃗𝑟
󸀠
) 𝜅 ( ⃗𝑟
󸀠
) (∇
󸀠
⋅ ⃗𝑓
𝐹

𝑛
( ⃗𝑟
󸀠
)) 𝑑V󸀠,

𝐼
𝐹,(2)

𝑚𝑛
( ⃗𝑟) = ∫

[𝑉
𝐹

𝑛
]

𝐺( ⃗𝑟, ⃗𝑟
󸀠
) [𝜅
𝐹,−

𝑛
− 𝜅
𝐹,+

𝑛
] 𝑑𝑠
󸀠
.

(13)

Note that 𝑎𝐹𝐹,1
𝑚𝑛

= 0 in (11) when𝑉𝐹
𝑚
and𝑉𝐹

𝑛
are properly sepa-

rated and that 𝑎𝐻𝐹,1
𝑚𝑛

= 0 in (12) when𝑉𝐻
𝑚
and𝑉𝐹

𝑛
are properly

separated:

𝑎
𝐹𝐻

𝑚𝑛
= ∫
𝑉
𝐹

𝑚

⃗𝑓
𝐹

𝑚
( ⃗𝑟) ⋅ ⃗𝑓

𝐻

𝑛
( ⃗𝑟)

𝜀
𝑟
( ⃗𝑟)

𝑑V

− 𝑘
2

0
∫
𝑉
𝐹

𝑚

𝑑V ⃗𝑓
𝐹

𝑚
( ⃗𝑟) ⋅ ∫

𝑉
𝐻

𝑛

𝐺( ⃗𝑟, ⃗𝑟
󸀠
) 𝜅 ( ⃗𝑟
󸀠
) ⃗𝑓
𝐻

𝑛
( ⃗𝑟
󸀠
) 𝑑V󸀠

+ ∫
𝑉
𝐹

𝑚

𝑑V (∇ ⋅ ⃗𝑓
𝐹

𝑚
( ⃗𝑟)) {𝐼

𝐻,(1)

𝑚𝑛
( ⃗𝑟) − 𝐼

𝐻,(2)

𝑚𝑛
( ⃗𝑟)}

:= 𝑎
𝐹𝐻,1

𝑚𝑛
− 𝑘
2

0
𝑎
𝐹𝐻,2

𝑚𝑛
+ 𝑎
𝐹𝐻,3

𝑚𝑛
,

(14)

𝑎
𝐻𝐻

𝑚𝑛
= ∫
𝑉
𝐻

𝑚

⃗𝑓
𝐻

𝑚
( ⃗𝑟) ⋅ ⃗𝑓

𝐻

𝑛
( ⃗𝑟)

𝜀
𝑟
( ⃗𝑟)

𝑑V

− 𝑘
2

0
∫
𝑉
𝐻

𝑚

𝑑V ⃗𝑓
𝐻

𝑚
( ⃗𝑟) ⋅ ∫

𝑉
𝐻

𝑛

𝐺( ⃗𝑟, ⃗𝑟
󸀠
) 𝜅 ( ⃗𝑟
󸀠
) ⃗𝑓
𝐻

𝑛
( ⃗𝑟
󸀠
) 𝑑V󸀠

+ [∫
𝑉
𝐻

𝑚

𝑑V (∇ ⋅ ⃗𝑓
𝐻

𝑚
( ⃗𝑟)) {𝐼

𝐻,(1)

𝑚𝑛
( ⃗𝑟) − 𝐼

𝐻,(2)

𝑚𝑛
( ⃗𝑟)}

− ∫
[𝑉
𝐻

𝑚
]

𝑑𝑠 {𝐼
𝐻,(1)

𝑚𝑛
( ⃗𝑟) − 𝐼

𝐻,(2)

𝑚𝑛
( ⃗𝑟)}]

:= 𝑎
𝐻𝐻,1

𝑚𝑛
− 𝑘
2

0
𝑎
𝐻𝐻,2

𝑚𝑛
+ 𝑎
𝐻𝐻,3

𝑚𝑛
,

(15)

where

𝐼
𝐻,(1)

𝑚𝑛
( ⃗𝑟) = ∫

𝑉
𝐻

𝑛

𝐺( ⃗𝑟, ⃗𝑟
󸀠
) 𝜅 ( ⃗𝑟
󸀠
) (∇
󸀠
⋅ ⃗𝑓
𝐻

𝑛
( ⃗𝑟
󸀠
)) 𝑑V󸀠,

𝐼
𝐻,(2)

𝑚𝑛
( ⃗𝑟) = ∫

[𝑉
𝐻

𝑛
]

𝑑𝑠
󸀠
𝐺( ⃗𝑟, ⃗𝑟

󸀠
) 𝜅 ( ⃗𝑟
󸀠
) .

(16)

Note that 𝑎𝐹𝐻,1
𝑚𝑛

= 0 in (14) when 𝑉𝐹
𝑚
and 𝑉𝐻

𝑛
are properly

separated and that 𝑎𝐻𝐻,1
𝑚𝑛

= 0 in (15) when 𝑉𝐻
𝑚

and 𝑉𝐻
𝑛

are
properly separated.

2.3. The Frame for the VIE-FG-FFT. In this section, the FG-
FFT technology is introduced into the VIE-MoM for both
reducing memory requirement and improving computa-
tional efficiency.

The entire MoMmatrix 𝐴 can be split into two parts: the
near-field matrix 𝐴near and the far-field matrix 𝐴far, and

𝐴 = (𝐴 − 𝐴
far
) + 𝐴

far
≃ 𝐴

near
+ 𝐴

far
, (17)

where the 𝐴near is a sparse matrix (the identification of a
near-element will be presented in the second paragraph of
Section 3), which is obtained by forcing all “far elements” of
𝐴−𝐴

far to be equal to zero, and𝐴far can ultimately expressed
in such a form as follows:

𝐴
far
= −𝑘
2

0
Π⃗
𝑓
⋅ 𝐺Π⃗
𝑇

𝑐
+ Π
𝑓
𝐺Π
𝑇

𝑐
, (18)

where Π⃗
𝑓
, Π⃗
𝑐
, Π
𝑓
, and Π

𝑐
are all sparse matrices which

will be constructed in Section 2.4 and where the head mark
“→ ” implies matrix elements being 3D vectors; 𝐺 is a triple
Toeplitz matrix related to Green’s function; the superscript 𝑇
indicates matrix transpose.

When an iterative solver is applied, the matrix-vector
product will be performed by means of

𝐴𝑥 ≃ 𝐴
near

𝑥 + 𝐴
far
𝑥, (19)

where𝐴near
𝑥 is directly calculated,while𝐴far

𝑥 can be speeded
up bymeans of the FFT through (18). In this way, theVIE-FG-
FFT can reduce the memory requirement and the compu-
tational complexity to 𝑂(𝑁) and 𝑂(𝑁 log(𝑁)) theoretically
(also see [9] for more detailed analysis).

2.4. Fitting Green’s Function. In this section, matrices Π⃗
𝑓
, Π⃗
𝑐
,

Π
𝑓
, and Π

𝑐
in (18) will be constructed. First, let a uniform

Cartesian grid enclose the given volumetric region 𝑉. Use
ℎ
𝑥
, ℎ
𝑦
, and ℎ

𝑧
to denote the three grid spacing sizes in the

directions 𝑥, 𝑦, and 𝑧̂, respectively. In this paper, however, the
convention ℎ := ℎ

𝑥
= ℎ
𝑦
= ℎ
𝑧
is always selected.

In a uniform Cartesian grid, an expansion box (or simply
box)C is defined as a cube-like collection composed of (𝑀

𝑥
+

1)×(𝑀
𝑦
+1)×(𝑀

𝑧
+1) nodes.When𝑀

𝑥
= 𝑀
𝑦
= 𝑀
𝑧
= 𝑀,C

includes (𝑀+1)
3 nodes and𝑀 is called its expansion order (or

simply order), written as |C|. Figure 2 illustrates a box of order
2.
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Table 1: Correspondences between integral regions and Gaussian points and weights.

Integral region 𝑉
𝐹,±

𝑚
𝑉
𝐻

𝑚
[𝑉
𝐹

𝑚
] 𝑉

𝐹,±

𝑛
𝑉
𝐻

𝑛
[𝑉
𝐻

𝑛
]

Gaussian points {𝑝⃗
±

𝑖
}
𝑁𝐺

𝑖=1
{𝑝⃗
𝑖
}
𝑁𝐺

𝑖=1
{ ⃗𝑠
𝑖
}
𝑀𝐺

𝑖=1
{ ⃗𝑞
±

𝑗
}
𝑁𝐺

𝑗=1
{ ⃗𝑞
𝑗
}
𝑁𝐺

𝑗=1
{ ⃗𝑡
𝑗
}
𝑀𝐺

𝑗=1

Gaussian weights {𝑤
𝑖
}
𝑁𝐺

𝑖=1
{𝑤
𝑖
}
𝑀𝐺

𝑖=1
{𝑤
𝑗
}
𝑁𝐺

𝑗=1
{𝑤
𝑗
}
𝑀𝐺

𝑗=1

h

x

y

z

h h

Figure 2: An expansion box of order 2.
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Figure 3: A 3D representation of the matching Green’s function.

Assume thatC
𝑛
is a box centered at 𝑐

𝑛
of radius 𝑟

𝑛
and ⃗𝑞 is

a fixed point within C
𝑛
. Let Green’s function be represented

into

𝐺 ( ⃗𝑟, ⃗𝑞) = ∑

k∈C𝑛
𝜋
⃗𝑞

k,C𝑛𝐺 ( ⃗𝑟, k) , (20)

where the coefficients 𝜋 ⃗𝑞V,C𝑛 are to be determined and ⃗𝑟 is an
arbitrary point outside the box C

𝑛
, as shown in Figure 3.

Now we select a spherical surface with the center at
𝑐
𝑛
and the radius 𝑅

𝑛
slightly larger than 𝑟

𝑛
, and select a

group of sample points { ⃗𝑟
𝑡
}
𝑇

𝑡=1
on the surface [18], where the

number 𝑇 ought to be significantly greater than that of the
nodes within C

𝑛
. In this paper, 𝑅

𝑛
− 𝑟
𝑛
= 0.15 wavelength,

which was adopted in [15]. Then we match Green’s function
values at these sample points.The resultant systems of matrix

equations can be solved by the least-square method [19]. In
this paper, the order of a box is selected to be 2, and at this
time the number of sample points on the testing spherical
surface is selected to be 120.

Without loss of generality, assume that𝑉𝐹,±
𝑚

and𝑉𝐻
𝑚
(𝑉𝐹,±
𝑛

and𝑉𝐻
𝑛
) are in boxC

𝑚
(C
𝑛
). Calculations ofMoMmatrix ele-

ments ultimately come down to calculations on the Gaussian
points. We specify using𝑁

𝐺
Gaussian points in a tetrahedral

region and 𝑀
𝐺
Gaussian points in a triangular region. For

convenience, the correspondences between integral regions
and Gaussian points and weights that will be used are all
listed in Table 1. When the testing element and the source
element are separated by a proper distance, all the first terms
in the right-hand side of (11), (12), (14), and (15) will vanish.
At this case, we can easily obtain the following approximate
expressions:

𝑎
𝐹𝐹,2

𝑚𝑛
= ∑

u∈C𝑚
∑

k∈C𝑛
𝜋⃗
⃗𝑓
𝐹

𝑚
,𝑓

u,C𝑚 ⋅ 𝐺 (u, k) 𝜋⃗
⃗𝑓
𝐹

𝑛
,𝑐

k,C𝑛 ,

𝑎
𝐹𝐹,3

𝑚𝑛
= ∑

u∈C𝑚
∑

k∈C𝑛
𝜋
⃗𝑓
𝐹

𝑚
,𝑓

u,C𝑚𝐺 (u, k) 𝜋
⃗𝑓
𝐹

𝑛
,𝑐

k,C𝑛 ,

𝑎
𝐻𝐹,2

𝑚𝑛
= ∑

u∈C𝑚
∑

k∈C𝑛
𝜋⃗
⃗𝑓
𝐻

𝑚
,𝑓

u,C𝑚 ⋅ 𝐺 (u, k) 𝜋⃗
⃗𝑓
𝐹

𝑛
,𝑐

k,C𝑛 ,

𝑎
𝐻𝐹,3

𝑚𝑛
= ∑

u∈C𝑚
∑

k∈C𝑛
𝜋
⃗𝑓
𝐻

𝑚
,𝑓

u,C𝑚𝐺 (u, k) 𝜋
⃗𝑓
𝐹

𝑛
,𝑐

k,C𝑛 ,

𝑎
𝐹𝐻,2

𝑚𝑛
= ∑

u∈C𝑚
∑

k∈C𝑛
𝜋⃗
⃗𝑓
𝐹

𝑚
,𝑓

u,C𝑚 ⋅ 𝐺 (u, k) 𝜋⃗
⃗𝑓
𝐻

𝑛
,𝑐

k,C𝑛 ,

𝑎
𝐹𝐻,3

𝑚𝑛
= ∑

u∈C𝑚
∑

k∈C𝑛
𝜋
⃗𝑓
𝐹

𝑚
,𝑓

u,C𝑚𝐺 (u, k) 𝜋
⃗𝑓
𝐻

𝑛
,𝑐

k,C𝑛 ,

𝑎
𝐻𝐻,2

𝑚𝑛
= ∑

u∈C𝑚
∑

k∈C𝑛
𝜋⃗
⃗𝑓
𝐻

𝑛
,𝑓

u,C𝑚 ⋅ 𝐺 (u, k) 𝜋⃗
⃗𝑓
𝐻

𝑛
,𝑐

k,C𝑛 ,

𝑎
𝐻𝐻,3

𝑚𝑛
= ∑

u∈C𝑚
∑

k∈C𝑛
𝜋
⃗𝑓
𝐻

𝑚
,𝑓

u,C𝑚𝐺 (u, k) 𝜋
⃗𝑓
𝐻

𝑛
,𝑐

k,C𝑛 ,

(21)

where the coefficients are calculated by using the following
formulae:

𝜋⃗
⃗𝑓
𝐹

𝑚
,𝑓

u,C𝑚 =
𝑁𝐺

∑

𝑖=1

𝑤
𝑖
[ ⃗𝑓
𝐹,+

𝑚
(𝑝⃗
+

𝑖
) 𝜋
𝑝⃗
+

𝑖

u,C𝑚 +
⃗𝑓
𝐹,−

𝑚
(𝑝⃗
−

𝑖
) 𝜋
𝑝⃗
−

𝑖

u,C𝑚] ,

𝜋
⃗𝑓
𝐹

𝑚
,𝑓

u,C𝑚 =
𝑁𝐺

∑

𝑖=1

𝑤
𝑖
{[∇ ⋅ ⃗𝑓

𝐹,+

𝑚
(𝑝⃗
+

𝑖
)] 𝜋
𝑝⃗
+

𝑖

u,C𝑚

+ [∇ ⋅ ⃗𝑓
𝐹,−

𝑚
(𝑝⃗
−

𝑖
)] 𝜋
𝑝⃗
−

𝑖

u,C𝑚} ,
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𝜋⃗
⃗𝑓
𝐹

𝑛
,𝑐

k,C𝑛 =
𝑁𝐺

∑

𝑗=1

𝑤
𝑗
[𝜅
𝐹,+

𝑛

⃗𝑓
𝐹,+

𝑛
( ⃗𝑞
+

𝑗
) 𝜋
⃗𝑞
+

𝑗

k,C𝑛

+ 𝜅
𝐹,−

𝑛

⃗𝑓
𝐹,−

𝑛
( ⃗𝑞
−

𝑗
) 𝜋
⃗𝑞
−

𝑗

k,C𝑛] ,

𝜋
⃗𝑓
𝐹

𝑛
,𝑐

k,C𝑛 =
𝑁𝐺

∑

𝑗=1

𝑤
𝑗
{𝜅
𝐹,+

𝑛
[∇ ⋅ ⃗𝑓

𝐹,+

𝑛
( ⃗𝑞
+

𝑗
)] 𝜋
⃗𝑞
+

𝑗

k,C𝑛

+ 𝜅
𝐹,−

𝑛
[∇ ⋅ ⃗𝑓

𝐹,−

𝑛
( ⃗𝑞
−

𝑗
)] 𝜋
⃗𝑞
−

𝑗

k,C𝑛}

+

𝑀𝐺

∑

𝑗=1

𝑤
𝑗
[𝜅
𝐹,−

𝑛
− 𝜅
𝐹,+

𝑛
] 𝜋
⃗𝑡𝑗

k,C𝑛 ,

𝜋⃗
⃗𝑓
𝐻

𝑚
,𝑓

u,C𝑚 =
𝑁𝐺

∑

𝑖=1

𝑤
𝑖
⃗𝑓
𝐻

𝑚
(𝑝⃗
𝑖
) 𝜋
𝑝⃗𝑖

u,C𝑚 ,

𝜋
⃗𝑓
𝐻

𝑚
,𝑓

u,C𝑚 =
𝑁𝐺

∑

𝑖=1

𝑤
𝑖
[∇ ⋅ ⃗𝑓

𝐻

𝑚
(𝑝⃗
𝑖
)] 𝜋
𝑝⃗𝑖

u,C𝑛 −
𝑀𝐺

∑

𝑖=1

𝑤
𝑖
𝜋
⃗𝑠𝑖

u,C𝑚 ,

𝜋⃗
⃗𝑓
𝐻

𝑛
,𝑐

k,C𝑛 =
𝑁𝐺

∑

𝑗=1

𝑤
𝑗
𝜅
𝐻

𝑛

⃗𝑓
𝐻

𝑛
( ⃗𝑞
𝑗
) 𝜋
⃗𝑞𝑗

k,C𝑛 ,

𝜋
⃗𝑓
𝐻

𝑛
,𝑐

k,C𝑛 =
𝑁𝐺

∑

𝑗=1

𝑤
𝑗
𝜅
𝐻

𝑛
[∇ ⋅ ⃗𝑓

𝐻

𝑛
( ⃗𝑞
𝑗
)] 𝜋
⃗𝑞𝑗

k,C𝑛 −
𝑀𝐺

∑

𝑗=1

𝑤
𝑗
𝜅
𝐻

𝑛
𝜋
⃗𝑡𝑗

k,C𝑛 .

(22)

Substituting (21) into (11)–(16), we can easily obtain
formula (18). It should be pointed out that performing
matrix-vector product 𝐴far

𝑥 once based on (18) requires at
least 8 FFTs.

2.5. On the Preprocessing Time. Here, the preprocessing time
means the time taken by generating the coefficients in (21).
Clearly, the preprocessing time is proportional to the corre-
sponding computational complexity. For general cases, from
the coefficient formulae in Section 2.4, it can be evaluated that
the number𝑁FG-FFT of required float multiplications is about

𝑁FG-FFT

= 𝑁
𝐹
(22𝑁
𝐺
+ 5𝑀
𝐺
+ 24) + 𝑁

𝐻
(11𝑁
𝐺
+ 2𝑀
𝐺
+ 15) .

(23)

In the VIE-P-FFT, the corresponding coefficients are gen-
erated by utilizing “projecting coefficients,” which requires
solving the least-square problem with multiple right-hand
terms. If the order of a box is selected to be 2, containing
27 grid points, and the number of the sample points on
the testing spherical surface is selected to be 𝑇, then the
matrix of the least-square problem in whether the VIE-
P-FFT or the VIE-FG-FFT is a 𝑇 × 27 complex matrix.
Further, if the SVD process of the matrix is ignored, then
the least-square solution for a right-hand term requires about
𝑇
2
+ 27
2 complex multiplications or about 3(𝑇2 + 272) real
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Figure 4: Bistatic RCS curves of the dielectric spherical shell in
Example A.

multiplications because a complex multiplication requires
at least 3 real multiplications. It is easily known from the
projection scheme introduced in [20] that, for generating the
corresponding coefficients, the number 𝑁P-FFT of required
float multiplications is about

𝑁P-FFT = 24𝑁 (𝑇
2
+ 27
2
) , (24)

which is usually much larger than𝑁FG-FFT.
It can be concluded from the above analysis that the pre-

processing time of theVIE-FG-FFT is obviously less than that
of theVIE-P-FFT for inhomogeneous nonmagnetic dielectric
objects.

3. Numerical Results

In this section, several examples are provided to demonstrate
the validity, accuracy, and efficiency of the VIE-FG-FFT. In
all the examples, the expansion order𝑀 is always chosen as
2, and the Cartesian grid spacing sizes in different directions
are always selected to be the same as each other; namely, ℎ :=
ℎ
𝑥
= ℎ
𝑦
= ℎ
𝑧
. Besides, 𝜆 denotes the wavelength in free space.

Our computing platform is a DELL T5400 workstation with
8 cores of clock frequency 3GHz, and the FFT codes are from
the FFTW [21].

Assume that the testing function and the source function
are located within boxes C

𝑚
and C

𝑛
, respectively. Then the

corresponding matrix element is identified as a near element
if and only if the distance between the center ofC

𝑚
and that of

C
𝑛
is smaller than the sum of the radius of C

𝑚
and that ofC

𝑛
.

3.1. Example A: Homogeneous Ball. A dielectric spherical
shell with the relative permittivity 2.0 is considered, as shown
in Figure 4. This object is discretized by using 23174 tetra-
hedrons with the average edge length 0.1𝜆, producing 51231
unknowns. The Cartesian grid spacing size is chosen as ℎ =
0.1𝜆.
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Figure 5: The dimensions of the hollow dielectric slab in Example
B.

Table 2: RMSEs of the RCSs in Example B.

Method ℎ(𝜆) RMSE ℎ(𝜆) RMSE ℎ(𝜆) RMSE
FG-FFT 0.1 0.0943 0.15 0.2004 0.2 0.5062
AIM 0.1 0.3895 0.15 0.9826 0.2 2.7141
IE-FFT 0.1 0.4415 0.15 1.0912 0.2 2.9753
P-FFT 0.1 0.0986 0.15 0.2048 0.2 0.5124

The bistatic RCS curve obtained by the FG-FFT is com-
pared with the Mie series solution in Figure 4. It can be seen
that the two curves coincide very well, which demonstrates
the validity of the FG-FFT.

3.2. Example B: Homogeneous Slab. A homogeneous hollow
dielectric slab with the relative permittivity 2.5 is considered,
as shown in Figure 5. The direction of the incident wave is
(𝜃

in
, 𝜑

in
) = (90

∘
, 45
∘
). This object is discretized by using 19301

tetrahedrons with the average edge length 0.1𝜆, producing
42862 unknowns. The Cartesian grid spacing size is chosen
as ℎ = 0.1𝜆, 0.15𝜆, and 0.2𝜆, respectively.

The bistation RCS curves obtained by the direct MoM,
the FG-FFT, and the other FFT-based methods (the P-FFT,
the AIM, and the IE-FFT) are all shown in Figure 6, and the
RMSEs are recorded in Table 2, which are calculated by the
following formula:

RMSE = √ 1

𝑁

𝑁

∑

𝑚=1

󵄨󵄨󵄨󵄨󵄨
RCSFFT-based − RCSMoM󵄨󵄨󵄨󵄨󵄨

2

, (25)

where𝑁 is the number of sampling theta azimuth angles. In
this example,𝑁 = 100.

It can be seen from Figure 6 and Table 2 that when the
grid spacing size is ℎ = 0.1𝜆, the four RCS curves obtained
by the FG-FFT, P-FFT, IE-FFT, and AIM agree well with
that by the direct MoM. However, when increasing the grid
spacing size gradually, both the FG-FFT and P-FFT can keep
consistent with the MoM, while both the P-FFT and IE-FFT
do not.

It can be concluded from the above experiments that
compared with both the AIM and IE-FFT, both the FG-FFT
and P-FFT are more accurate and not sensitive to the Carte-
sian grid spacing size.

Table 3: RMSEs of the RCSs in Example C.

Method ℎ(𝜆) RMSE ℎ(𝜆) RMSE ℎ(𝜆) RMSE
FG-FFT 0.1 0.0704 0.15 0.1579 0.2 0.4854
AIM 0.1 0.3771 0.15 0.5648 0.2 1.2602
IE-FFT 0.1 0.4529 0.15 0.6406 0.2 1.3502
P-FFT 0.1 0.0738 0.15 0.1614 0.2 0.4936

Table 4: The Preprocessing time in Example D.

Method Edge length (𝜆) Unknowns Preprocessing time (s)
FG-FFT 0.15 10875 18.42
P-FFT 84.36
FG-FFT 0.1 39927 261.27
P-FFT 512.69
FG-FFT 0.08 61376 934.07
P-FFT 1326.58

3.3. Example C: PartitionedHomogeneous Slab. Apartitioned
homogeneous hollow dielectric slab with 4 different relative
permittivities is considered, as shown in Figure 7. The direc-
tion of the incident wave is (𝜃in, 𝜑in) = (90∘, 45∘). This object
is discretized by using 17714 tetrahedrons with the average
edge length 0.1𝜆, producing 39927 unknowns. The Cartesian
grid spacing size is chosen as ℎ = 0.1𝜆, 0.15𝜆, and 0.2𝜆,
respectively.

The bistatic RCS curves obtained by the direct MoM,
the FG-FFT, and other FFT-based methods are all shown
in Figure 8, and the RMSEs are recorded in Table 3. In this
example,𝑁 = 100 for the RMSE.

It is again seen from Figure 8 and Table 3 that the
accuracy of both the FG-FFT and P-FFT is higher than that
of both the IE-FFT and AIM.

3.4. Example D: Inhomogeneous Slab. Here the dielectric slab
in Figure 5 is again considered. The direction of the incident
wave is kept unchanged. But at this time, the relative permit-
tivity

𝜀
𝑟
(𝑥, 𝑦, 𝑧) = 𝜀

󸀠

𝑟
(𝑥, 𝑦, 𝑧) − 𝑗𝜀

󸀠󸀠

𝑟
(𝑥, 𝑦, 𝑧) (26)

is defined by

𝜀
󸀠

𝑟
(𝑥, 𝑦, 𝑧) = 0.2

𝑥 + 𝑦 + 𝑧

10.1
+ 2.0,

𝜀
󸀠󸀠

𝑟
(𝑥, 𝑦, 𝑧) = 0.1,

(27)

where 𝑥, 𝑦, 𝑧 ≥ 0. Now, the average edge length used in the
discretization is selected within {0.08𝜆, 0.1𝜆, 0.15𝜆}.

Different discretization granularities correspond to dif-
ferent numbers of unknowns, as shown in Table 4. The
bistatic RCS curves obtained by the FG-FFT and P-FFT for
different discretization granularities are all shown in Figure 9,
and the preprocessing time for the FG-FFT and P-FFT is
recorded in Table 4.

It can be seen from Figure 9 that the RCS curves for dif-
ferent discretization granularities are almost the same as each
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Figure 6: Bistatic RCS curves of the homogeneous dielectric slab in Example B.
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Figure 8: Bistatic RCS curves of the partitioned homogeneous dielectric slab in Example C.

other. It can be known from Table 4 that the preprocessing
time of the FG-FFT is obviously less than that of the P-FFT for
different discretization granularities.

4. Conclusions

In this paper, a new realization of the VIE combined with the
fast Fourier transform (VIE-FG-FFT) has been established
to solve EM scattering from inhomogeneous nonmagnetic
dielectric objects. The proposed method has been compared
with several existing popular FFT-based methods, including
the VIE-P-FFT, VIE-AIM, and VIE-IE-FFT. The accuracy of
the VIE-FG-FFT is almost the same as that of the VIE-P-
FFT and higher than that of the VIE-AIM and VIE-IE-FFT

especially when increasing the grid spacing size. Besides, the
preprocessing time of the VIE-FG-FFT is obviously less than
that of the P-FFT for inhomogeneous nonmagnetic dielectric
objects.
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