380 research outputs found

    Assessing the Effects of Acupuncture by Comparing Needling the Hegu Acupoint and Needling Nearby Nonacupoints by Spectral Analysis of Microcirculatory Laser Doppler Signals

    Get PDF
    We aimed to assess the effects of acupuncture by analyzing the frequency content of skin blood-flow signals simultaneously recorded at the Hegu acupoint and two nearby nonacupoints following acupuncture stimulation (AS). Laser Doppler flowmetry (LDF) signals were measured in male healthy volunteers in two groups of experiments: needling the Hegu acupoint (n = 13) and needling a nearby nonacupoint (control experiment; n = 10). Each experiment involved recording a 20 min baseline-data sequence and two sets of effects data recorded 0–20 and 50–70 min after stopping AS. Wavelet transform with Morlet mother wavelet was applied to the measured LDF signals. Needling the Hegu acupoint significantly increased the blood flow, significantly decreased the relative energy contribution at 0.02–0.06 Hz and significantly increased the relative energy contribution at 0.4–1.6 Hz at Hegu, but induced no significant changes at the nonacupoints. Also, needling a nearby nonacupoint had no effect in any band at any site. This is the first time that spectral analysis has been used to investigate the microcirculatory blood-flow responses induced by AS, and has revealed possible differences in sympathetic nerve activities between needling the Hegu acupoint and its nearby nonacupoint. One possible weakness of the present design is that different De-Qi feelings following AS could lead to nonblind experimental setup, which may bias the comparison between needling Hegu and its nearby nonacupoint. Our results suggest that the described noninvasive method can be used to evaluate sympathetic control of peripheral vascular activity, which might be useful for studying the therapeutic effects of AS

    Using Script Command to Conquer the Narrowband Constraint in Synchronous Long-distance Teaching System

    Get PDF
    Abstract: The applications of synchronous long-distance teaching (SLDT) are more and more valuable with the internet prevalence. One of the SLDT restrictions is the bandwidth consumption of the connection between teacher's side and students' sides. Even though most users use broadband network at present, there are still users using narrowband networks, such as dial-up and 3.5G network. It is very difficult to conduct SLDT in the narrowband network unless reducing the demands of network bandwidth consumption, especially while the teaching materials including video, audio, and so on. This paper proposes a novel scheme to reduce the network bandwidth requirement of SLDT efficiently. Original SLDT system transmits all teaching materials in full screen frames, so that it needs a great amount of network bandwidth. The proposed innovative technique encodes some of the teaching materials, including typing texts, messages on the electronic whiteboard, drawing pictures and timestamps into script commands. In this way, the encoded script commands are transmitted through the text channel of the multimedia streaming, while the audio and video channels carry the teacher's voice and images. When the students' sides receive the multimedia streaming, it is decoded back to the full screen frames. In this paper, the design of the encoder and decoder will be addressed in detail. The experimental results proved that our proposed scheme could reduce the demand of network bandwidth consumption efficaciously. Even at the dial-up and 3.5G network environment, students' sides could play the teaching frames very smoothly. That is, our implemented system could conquer the narrowband constraint and provide users to carry out SLDT in the narrowband network

    Transverse force generated by an electric field and transverse charge imbalance in spin-orbit coupled systems

    Full text link
    We use linear response theory to study the transverse force generated by an external electric field and hence possible charge Hall effect in spin-orbit coupled systems. In addition to the Lorentz force that is parallel to the electric field, we find that the transverse force perpendicular to the applied electric field may not vanish in a system with an anisotropic energy dispersion. Surprisingly, in contrast to the previous results, the transverse force generated by the electric field does not depend on the spin current, but in general, it is related to the second derivative of energy dispersion only. Furthermore, we find that the transverse force does not vanish in the Rashba-Dresselhaus system. Therefore, the non-vanishing transverse force acts as a driving force and results in charge imbalance at the edges of the sample. The estimated ratio of the Hall voltage to the longitudinal voltage is 103\sim 10^{-3}. The disorder effect is also considered in the study of the Rashba-Dresselhaus system. We find that the transverse force vanishes in the presence of impurities in this system because the vertex correction and the anomalous velocity of the electron accidently cancel each other

    LQR-Mapped Fuzzy Controller Applied to Attitude Stabilization of a Power-Aided-Unicycle

    Get PDF
    Abstract. Analysis of attitude stabilization of a power-aided unicycle points out that a unicycle behaves like an inverted pendulum subject to power constraint. An LQR-mapped fuzzy controller is introduced to solve this nonlinear issue by mapping LQR control reversely through least square and Sugeno-type fuzzy inference. The fuzzy rule surface after mapping remains optimal

    Moderate glucose control results in less negative nitrogen balances in medical intensive care unit patients: a randomized, controlled study

    Get PDF
    INTRODUCTION: Hyperglycemia and protein loss are common in critically ill patients. Insulin can be used to lower blood glucose and inhibit proteolysis. The impact of moderate insulin therapy on protein metabolism in critically ill patients has not been evaluated. We compared urinary nitrogen excretion, nitrogen balance, serum albumin concentrations, prealbumin concentrations, and clinical outcomes between patients receiving moderate insulin therapy (MIT) and conventional insulin therapy (CIT) in a medical ICU. METHODS: Patients were randomly divided into groups and treated with MIT (glucose target 120 to 140 mg/dl) or CIT (glucose target 180 to 200 mg/dl). Calories and protein intake were recorded each day. On days 3, 7 and 14, the 24-hour urinary nitrogen excretion, nitrogen balance, and serum albumin and prealbumin concentrations were measured. Clinical outcomes data were collected. RESULTS: A total of 112 medical ICU patients were included, with 55 patients randomized to the MIT group and 57 patients randomized to the CIT group. Patients treated with MIT showed a trend towards increased nitrogen balance (P = 0.070), significantly lower urinary nitrogen excretion (P = 0.027), and higher serum albumin (P = 0.047) and prealbumin (P = 0.001) concentrations than patients treated with CIT. The differences between the two groups were most significant on day 3, when all factors showed significant differences (P < 0.05). CONCLUSIONS: Moderate glucose control results in less negative nitrogen balances in medical ICU patients. Differences are more significant in the early stages compared with the late stages of critical illness. TRIAL REGISTRATION: ClinicalTrial.Gov NCT 0122714

    Quantum state tomography via non-convex Riemannian gradient descent

    Full text link
    The recovery of an unknown density matrix of large size requires huge computational resources. The recent Factored Gradient Descent (FGD) algorithm and its variants achieved state-of-the-art performance since they could mitigate the dimensionality barrier by utilizing some of the underlying structures of the density matrix. Despite their theoretical guarantee of a linear convergence rate, the convergence in practical scenarios is still slow because the contracting factor of the FGD algorithms depends on the condition number κ\kappa of the ground truth state. Consequently, the total number of iterations can be as large as O(κln(1ε))O(\sqrt{\kappa}\ln(\frac{1}{\varepsilon})) to achieve the estimation error ε\varepsilon. In this work, we derive a quantum state tomography scheme that improves the dependence on κ\kappa to the logarithmic scale; namely, our algorithm could achieve the approximation error ε\varepsilon in O(ln(1κε))O(\ln(\frac{1}{\kappa\varepsilon})) steps. The improvement comes from the application of the non-convex Riemannian gradient descent (RGD). The contracting factor in our approach is thus a universal constant that is independent of the given state. Our theoretical results of extremely fast convergence and nearly optimal error bounds are corroborated by numerical results.Comment: Comments are welcome

    Segregation analysis of apolipoprotein A1 levels in families of adolescents: A community-based study in Taiwan

    Get PDF
    BACKGROUND: Apolipoprotein (Apo) A1 is a protective factor for cardiovascular events. This study aimed to perform complex segregation analyses of Apo A1 levels in families of adolescents systematically ascertained from the junior high school students in a rural community. Both siblings and parents of the adolescent probands were recruited for the study. Apo A1 concentrations were measured by turbidimetric immunoassay methods. After adjustment for gender, age, body mass index, smoking and drinking status, residual values of Apo A1 were subjected to subsequent analyses. RESULTS: Significant mother-father and parent-offspring correlations were found. Commingling analyses indicated that a four-component distribution model was needed to account for the Apo A1 variation. Segregation analysis using regressive models revealed that the best-fit model of Apo A1 was a model of environmental effect plus familial correlation (heritability = 23.9%), in which a significant mother-father correlation existed. Models containing major gene effect could be rejected. CONCLUSION: These results suggest that variations of Apo A1 levels in the normal range, especially during adolescence, are likely to be influenced by multiple factors without significant contribution from major genes
    corecore