227 research outputs found

    Unfolding first-principles band structures

    Full text link
    A general method is presented to unfold band structures of first-principles super-cell calculations with proper spectral weight, allowing easier visualization of the electronic structure and the degree of broken translational symmetry. The resulting unfolded band structures contain additional rich information from the Kohn-Sham orbitals, and absorb the structure factor that makes them ideal for a direct comparison with angular resolved photoemission spectroscopy experiments. With negligible computational expense via the use of Wannier functions, this simple method has great practical value in the studies of a wide range of materials containing impurities, vacancies, lattice distortions, or spontaneous long-range orders.Comment: 4 pages, 3 figure

    Dynamical Linear Response of TDDFT with LDA+U Functional: strongly hybridized Frenkel excitons in NiO

    Get PDF
    Within the framework of time-dependent density-functional theory (TDDFT), we derive the dynamical linear response of LDA+U functional and benchmark it on NiO, a prototypical Mott insulator. Formulated using real-space Wannier functions, our computationally inexpensive framework gives detailed insights into the formation of tightly bound Frenkel excitons with reasonable accuracy. Specifically, a strong hybridization of multiple excitons is found to significantly modify the exciton properties. Furthermore, our study exposes a significant generic limitation of adiabatic approximation in TDDFT with hybrid functionals and in existing Bethe-Salpeter-equation approaches, advocating the necessity of strongly energy-dependent kernels in future development.Comment: 5 pages, 2 figure

    Unified Picture for Magnetic Correlations in Iron-Based Superconductors

    Full text link
    The varying metallic antiferromagnetic correlations observed in iron-based superconductors are unified in a model consisting of both itinerant electrons and localized spins. The decisive factor is found to be the sensitive competition between the superexchange antiferromagnetism and the orbital-degenerate double-exchange ferromagnetism. Our results reveal the crucial role of Hund's rule coupling for the strongly correlated nature of the system and suggest that the iron-based superconductors are closer kin to manganites than cuprates in terms of their diverse magnetism and incoherent normal-state electron transport. This unified picture would be instrumental for exploring other exotic properties and the mechanism of superconductivity in this new class of superconductors.Comment: Revised for publication. 3 figure

    Ferro-Orbital Order and Strong Magnetic Anisotropy in the Parent Compounds of Iron-Pnictide Superconductors

    Full text link
    The puzzling nature of magnetic and lattice phase transitions of iron pnictides is investigated via a first-principles Wannier function analysis of representative parent compound LaOFeAs. A rare ferro-orbital ordering is found to give rise to the recently observed highly anisotropic magnetic coupling, and drive the phase transitions--without resorting to widely employed frustration or nesting picture. The revealed necessity of the additional orbital physics leads to a correlated electronic structure fundamentally distinct from that of the cuprates. In particular, the strong coupling to the magnons advocates active roles of light orbitons in spin dynamics and electron pairing in iron pnictides.Comment: accepted by Physical Review Letter

    An e-Voting Scheme with Improved Resistance to Bribe and Coercion

    Get PDF
    Bribe and coercion are common in conventional voting systems and usually will lead to a biased result that imparts the desired democracy. However, these problems become more difficult to solve when using e-voting schemes. Up to now, many e-voting schemes have been proposed to provide receipt-freeness and uncoercibility to solve these problems. Unfortunately, none is both secure and practical enough. In this paper, we describe an e-voting scheme that can solve or at least lessen the problems of bribe and coercion, and can be realized with current techniques. By using smart cards to randomize part content of the ballot, the voter can not construct a receipt. By using physical voting booths, bribers and coercers can not monitor the voter while he votes. Unlike conventional voting systems, the voter of the proposed scheme can choose any voting booth that is convenient and safe to him. Furthermore, the performance of the proposed schemes is optimal in that time and communication complexity for the voter is independent of the number of voting authorities

    One-Fe versus Two-Fe Brillouin Zone of Fe-Based Superconductors: Creation of the Electron Pockets via Translational Symmetry Breaking

    Full text link
    We investigate the physical effects of translational symmetry breaking in Fe-based high-temperature superconductors due to alternating anion positions. In the representative parent compounds, including the newly discovered Fe-vacancy-ordered K0.8Fe1.6Se2\mathrm{K_{0.8}Fe_{1.6}Se_2}, an unusual change of orbital character is found across the one-Fe Brillouin zone upon unfolding the first-principles band structure and Fermi surfaces, suggesting that covering a larger one-Fe Brillouin zone is necessary in experiments. Most significantly, the electron pockets (critical to the magnetism and superconductivity) are found only created with the broken symmetry, advocating strongly its full inclusion in future studies, particularly on the debated nodal structures of the superconducting order parameter.Comment: Accepted by Physical Review Letters. Updated in Figure 2 and supplementary informatio

    First-principles method of propagation of tightly bound excitons: exciton band structure of LiF and verification with inelastic x-ray scattering

    Get PDF
    We propose a simple first-principles method to describe propagation of tightly bound excitons. By viewing the exciton as a composite object (an effective Frenkel exciton in Wannier orbitals), we define an exciton kinetic kernel to encapsulate the exciton propagation and decay for all binding energy. Applied to prototypical LiF, our approach produces three exciton bands, which we verified quantitatively via inelastic x-ray scattering. The proposed real-space picture is computationally inexpensive and thus enables study of the full exciton dynamics, even in the presence of surfaces and impurity scattering. It also provides intuitive understanding to facilitate practical exciton engineering in semiconductors, strongly correlated oxides, and their nanostructures.Comment: 5 pages, 4 figures. Accepted by PR

    Association of DRD4 uVNTR and TP53 codon 72 polymorphisms with schizophrenia: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The tumour supressor gene TP53 is thought to be involved in neural apoptosis. The polymorphism at codon 72 in TP53 and the long form variants of the upstream variable number of tandem repeats (uVNTR) polymorphism in the dopamine D4 receptor (DRD4) gene are reported to confer susceptibility to schizophrenia.</p> <p>Methods</p> <p>We recruited 934 patients with schizophrenia and 433 healthy individuals, and genotyped the locus of the TP53 codon 72 and DRD4 uVNTR polymorphisms by combining the polymerase chain reaction-restriction fragment length polymorphism method (PCR-RFLP) with direct sequencing.</p> <p>Results</p> <p>No significant differences were found in the frequency of the genotype of the TP53 codon72 polymorphism between patients with schizophrenia and their controls. However, the long form alleles (≥ 5 repeats) of the DRD4 uVNTR polymorphism were more frequent in patients with schizophrenia than in controls (p = 0.001). Hence, this class of alleles might be a risk factor for enhanced vulnerability to schizophrenia (odds ratio = 3.189, 95% confidence interval = 1.535-6.622). In the logistic regression analysis, the long form variants of the DRD4 polymorphism did predict schizophrenia after the contributions of the age and gender of the subjects were included (p = 0.036, OR = 2.319), but the CC and GG genotypes of the codon 72 polymorphism of TP53 did not.</p> <p>Conclusions</p> <p>The long form variants of the uVNTR polymorphism in DRD4 were associated with schizophrenia, in a manner that was independent of the TP53 codon 72 polymorphism. In addition, given that the genetic effect of the TP53 codon 72 polymorphism on the risk of developing schizophrenia was very small, this polymorphism is unlikely to be associated with schizophrenia. The roles that other single nucleotide polymorphisms (SNPs) in the TP53 gene or in other apoptosis-related genes play in the synaptic dysfunction involved in the pathogenesis of schizophrenia should be investigated.</p
    corecore