92 research outputs found

    Mechanisms of Visible Light Photocatalysis in N-Doped Anatase TiO2 with Oxygen Vacancies from GGA+U Calculations

    Get PDF
    We have systematically studied the photocatalytic mechanisms of nitrogen doping in anatase TiO2 using first-principles calculations based on density functional theory, employing Hubbard U (8.47 eV) on-site correction. The impurity formation energy, charge density, and electronic structure properties of TiO2 supercells containing substitutional nitrogen, interstitial nitrogen, or oxygen vacancies were evaluated to clarify the mechanisms under visible light. According to the formation energy, a substitutional N atom is better formed than an interstitial N atom, and the formation of an oxygen vacancy in N-doped TiO2 is easier than that in pure TiO2. The calculated results have shown that a significant band gap narrowing may only occur in heavy nitrogen doping. With light nitrogen doping, the photocatalysis under visible light relies on N-isolated impurity states. Oxygen vacancies existence in N-doped TiO2 can improve the photocatalysis in visible light because of a band gap narrowing and n-type donor states. These findings provide a reasonable explanation of the mechanisms of visible light photocatalysis in N-doped TiO2

    Cascaded Local Implicit Transformer for Arbitrary-Scale Super-Resolution

    Full text link
    Implicit neural representation has recently shown a promising ability in representing images with arbitrary resolutions. In this paper, we present a Local Implicit Transformer (LIT), which integrates the attention mechanism and frequency encoding technique into a local implicit image function. We design a cross-scale local attention block to effectively aggregate local features. To further improve representative power, we propose a Cascaded LIT (CLIT) that exploits multi-scale features, along with a cumulative training strategy that gradually increases the upsampling scales during training. We have conducted extensive experiments to validate the effectiveness of these components and analyze various training strategies. The qualitative and quantitative results demonstrate that LIT and CLIT achieve favorable results and outperform the prior works in arbitrary super-resolution tasks

    Deploying Image Deblurring across Mobile Devices: A Perspective of Quality and Latency

    Full text link
    Recently, image enhancement and restoration have become important applications on mobile devices, such as super-resolution and image deblurring. However, most state-of-the-art networks present extremely high computational complexity. This makes them difficult to be deployed on mobile devices with acceptable latency. Moreover, when deploying to different mobile devices, there is a large latency variation due to the difference and limitation of deep learning accelerators on mobile devices. In this paper, we conduct a search of portable network architectures for better quality-latency trade-off across mobile devices. We further present the effectiveness of widely used network optimizations for image deblurring task. This paper provides comprehensive experiments and comparisons to uncover the in-depth analysis for both latency and image quality. Through all the above works, we demonstrate the successful deployment of image deblurring application on mobile devices with the acceleration of deep learning accelerators. To the best of our knowledge, this is the first paper that addresses all the deployment issues of image deblurring task across mobile devices. This paper provides practical deployment-guidelines, and is adopted by the championship-winning team in NTIRE 2020 Image Deblurring Challenge on Smartphone Track.Comment: CVPR 2020 Workshop on New Trends in Image Restoration and Enhancement (NTIRE

    Risk factors for complications and graft failure in kidney transplant patients with sepsis

    Get PDF
    Immunosuppressive therapies decreased the incidence of acute kidney rejection after kidney transplantation, but also increased the risk of infections and sepsis. This study aimed to identify the risk factors associated with complications and/or graft failure in kidney transplant patients with sepsis. A total of 14,658 kidney transplant patients with sepsis, identified in the National Inpatient Sample (NIS) database (data from 2005–2014), were included in the study and classified into three groups: patients without complications or graft failure/dialysis (Group 1), patients with complications only (Group 2), and patients with complications and graft failure/dialysis (Group 3). Multinomial logistic regression analyses were conducted to evaluate factors associated with kidney transplant recipients. Multivariate analysis showed that, compared to Group 1, patients from Group 2 or Group 3 were more likely to be Black and to have cytomegalovirus infection, coagulopathy, and glomerulonephritis (p ≤ 0.041). Also, Group 2 was more likely to have herpes simplex virus infection, and Group 3 was more likely to have hepatitis C infection and peripheral vascular disorders, compared to Group 1 (p ≤ 0.002). In addition, patients from Group 3 were more likely to be Black and to have hepatitis C infection, peripheral vascular disorders, coagulopathy, and hypertension compared to Group 2 (p ≤ 0.039). Age and female gender were associated with lower odds of complications after kidney transplantation regardless of graft rejection/dialysis (p ≤ 0.049). Hyperlipidemia and diabetes decreased the chance of complications and graft failure/dialysis after kidney transplant (p < 0.001). In conclusion, the study highlights that black race, male gender, and specific comorbidities can increase the risk of complications and graft failure in kidney transplant patients with sepsis

    Polarized epithelium-sperm co-culture system reveals stimulatory factors for the secretion of mouse epididymal quiescin sulfhydryl oxidase 1

    Get PDF
    Spermatozoa acquire fertilization ability through post-translational modifications. These membrane surface alterations occur in various segments of the epididymis. Quiescin sulfhydryl oxidases, which catalyze thioloxidation reactions, are involved in disulfide bond formation, which is essential for sperm maturation, upon transition and migration in the epididymis. Using castration and azoospermia transgenic mouse models, in the present study, we showed that quiescin sulfhydryl oxidase 1 (QSOX1) protein expression and secretion are positively correlated with the presence of testosterone and sperm cells. A two-dimensional in vitro epithelium-sperm co-culture system provided further evidence in support of the notion that both testosterone and its dominant metabolite, 5 alpha-dihydrotestosterone, promote epididymal QSOX1 secretion. We also demonstrated that immature caput spermatozoa, but not mature cauda sperm cells, exhibited great potential to stimulate QSOX1 secretion in vitro, suggesting that sperm maturation is a key regulatory factor for mouse epididymal QSOX1 secretion. Proteomic analysis identified 582 secretory proteins from the co-culture supernatant, of which 258 were sperm-specific and 154 were of epididymal epitheliumorigin. Gene Ontology analysis indicated that these secreted proteins exhibit functions known to facilitate sperm membrane organization, cellular activity, and sperm-egg recognition. Taken together, our data demonstrated that testosterone and sperm maturation status are key regulators of mouse epididymal QSOX1 protein expression and secretion.</p

    Enhanced catalytic soot oxidation by Ce-based MOF-derived ceria nano-bar with promoted oxygen vacancy

    Get PDF
    As CeO2 is a useful catalyst for soot elimination, it is important to develop CeO2 with higher contact areas, and reactivities for efficient soot oxidation and catalytic soot oxidation are basically controlled by structures and surface properties of catalysts. Herein, a Ce-Metal organic framework (MOFs) consisting of Ce and benzene-1,3,5-tricarboxylic acid (H3BTC) is employed as the precursor as CeBTC exhibits a unique bar-like high-aspect-ratio morphology, which is then transformed into CeO2 with a nanoscale bar-like configuration. More importantly, this CeO2 nanobar (CeONB) possesses porou, and even hollow structures, as well as more oxygen vacancies, enabling CeONB to become a promising catalyst for soot oxidation. Thus, CeONB shows a much higher catalytic activity than commercial CeO2 nanoparticle (comCeO) for soot oxidation with a significantly lower ignition temperature (Tig). Moreover, while soot oxidation by comCeO leads to production of CO together with CO2, CeONB can completely convert soot to CO2. The tight contact mode also enables CeONB to exhibit a very low Tig of 310 °C, whereas the existence of NO also enhances the soot oxidation by CeONB to reduce the Tig. The mechanism of NO-assisted soot oxidation is also examined, and validated by DRIFTS to identify the formation and transformation of nitrogen-containing intermediates. CeONB is also recyclable over many consecutive cycles and maintained its high catalytic activity for soot oxidation. These results demonstrate that CeONB is a promising and easily prepared high-aspect-ratio Ce-based catalyst for soot oxidation

    Epilepsy and Neurodevelopmental Outcomes in Children With Etiologically Diagnosed Central Nervous System Infections: A Retrospective Cohort Study

    Get PDF
    Background: Central nervous system (CNS) infection in childhood can lead to neurological sequelae, including epilepsy, and neurodevelopmental disorders, such as attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). This study investigated the association of etiologically diagnosed childhood brain infections with the subsequent risks of epilepsy and neurodevelopmental disorders.Objectives: We retrospectively analyzed the data of children aged &lt;18 years who had definite brain infections with positive cerebrospinal fluid cultures from January 1, 2005, to December 31, 2017. These patients were followed to evaluate the risks of epilepsy and neurodevelopmental disease (ADHD and ASD) after brain infections (group 1) in comparison with the risks in those without brain infections (group 2).Results: A total of 145 patients with an average age of 41.2 months were included in group 1. Enterovirus accounted for the majority of infections, followed by group B Streptococcus, S. pneumoniae, and herpes simplex virus. A total of 292 patients with an average age of 44.8 months were included in group 2. The 12-year risk of epilepsy in group 1 was 10.7 (95% confidence interval [CI], 2.30–49; p &lt; 0.01). Compared with group 2 (reference), the risk of ASD in the age interval of 2–5 years in group 1 was 21.3 (95% CI, 1.33–341.4; p = 0.03). The incidence of ADHD in group 1 was not significantly higher than that in group 2.Conclusions: This study identified the common etiological causes of brain infections in Taiwanese children. The highest-risk neurodevelopmental sequelae associated with brain infections was epilepsy. Children who had a diagnosis of brain infection (specially Enterovirus) should be followed since they are at greater risk of developing epilepsy and ASD

    Active Component of Antrodia cinnamomea

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) is a highly lethal cancer. Previously, we identify head and neck cancer initiating cells (HN-CICs), which are highly tumorigenic and resistant to conventional therapy. Therefore, development of drug candidates that effectively target HN-CICs would benefit future head and neck cancer therapy. In this study, we first successfully screened for an active component, named YMGKI-1, from natural products of Antrodia cinnamomea Mycelia (ACM), which can target the stemness properties of HNSCC. Treatment of YMGKI-1 significantly downregulated the aldehyde dehydrogenase (ALDH) activity, one of the characteristics of CIC in HNSCC cells. Additionally, the tumorigenic properties of HNSCC cells were attenuated by YMGKI-1 treatment in vivo. Further, the stemness properties of HN-CICs, which are responsible for the malignancy of HNSCC, were also diminished by YMGKI-1 treatment. Strikingly, YMGKI-1 also effectively suppressed the cell viability of HN-CICs but not normal stem cells. Finally, YMGKI-1 induces the cell death of HN-CICs by dysregulating the exaggerated autophagic signaling pathways. Together, our results indicate that YMGKI-1 successfully lessens stemness properties and tumorigenicity of HN-CICs. These findings provide a new drug candidate from purified components of ACM as an alternative therapy for head and neck cancer in the future

    Effects of temperatures on growth, physiological, and antioxidant characteristics in Houttuynia cordata

    No full text
    DOI: 10.15835/nbha49412536 Houttuynia cordata Thunb. (HC) is a traditional medicinal plant with a variety of pharmaceutical activities. The objective of this study was to investigate the growth, photosynthetic parameters, and antioxidant properties of HC plants in response to various temperatures. Pots of HC plants were maintained in day/night temperatures of 15/10 °C, 20/15 °C, 25/20 °C (control), 30/25 °C, and 35/30 °C for two months in each of five growth chambers having a 13.5 h photoperiod at 396, 432, 474, 449, and 619 µmol·m-2·s-1 radiation, respectively. Eight plants for each temperature were randomly placed in a growth chamber. HC plants survived at 30/25 °C and 35/30 °C treatments and had significantly higher plant heights, leaf numbers, and soil-plant analysis development (SPAD) and normalized difference vegetation index (NDVI) values compared to other treatments. However, long-term 35/30 °C treatment caused reductions in leaf length and width, significantly decreasing shoot and leaf fresh weight (FW) and dry weight (DW) compared to 30/25 °C treatment and controls. These results indicate that HC leaf development was affected during the 35/30 °C treatment, and that both SPAD and NDVI can help in advancing our understanding of the photosynthesis process in HC. Moreover, all plants subjected to 15/10 °C suffered more severely in all traits and parameters than other treatments. Therefore, HC plants tended to be heat-tolerant and exhibited adaptive morphologic plasticity to 30/25 °C conditions. Positive and significant correlations were observed among temperatures and total phenolics (TP), total flavonoids (TF), chlorogenic acid (CGA), and hyperoside (HO) content, and all bioactive contents increased as temperature increased, except that both CGA and HO content were remarkably decreased after 30/25 °C treatment. Thus, 30/25 °C treatment would be more beneficial for high marketability resulting from increased leaf number, DW, and all secondary metabolites compared to other treatments, and for use as a health food and for medicinal purposes. In addition, leaf growth, physiological parameters, and secondary metabolite accumulations in HC plants can be optimized for commercial production via temperature control technologies. This approach may also be applicable to leafy vegetables to produce stable industrial supplies having high leaf yields and metabolite content
    • …
    corecore