34,905 research outputs found
GRBs and fundamental physics
Gamma-ray bursts (GRBs) are short and intense flashes at the cosmological
distances, which are the most luminous explosions in the Universe. The high
luminosities of GRBs make them detectable out to the edge of the visible
universe. So, they are unique tools to probe the properties of high-redshift
universe: including the cosmic expansion and dark energy, star formation rate,
the reionization epoch and the metal evolution of the Universe. First, they can
be used to constrain the history of cosmic acceleration and the evolution of
dark energy in a redshift range hardly achievable by other cosmological probes.
Second, long GRBs are believed to be formed by collapse of massive stars. So
they can be used to derive the high-redshift star formation rate, which can not
be probed by current observations. Moreover, the use of GRBs as cosmological
tools could unveil the reionization history and metal evolution of the
Universe, the intergalactic medium (IGM) properties and the nature of first
stars in the early universe. But beyond that, the GRB high-energy photons can
be applied to constrain Lorentz invariance violation (LIV) and to test
Einstein's Equivalence Principle (EEP). In this paper, we review the progress
on the GRB cosmology and fundamental physics probed by GRBs.Comment: 38 pages, 18 figures, Review based on ISSI workshop "Gamma-Ray
Bursts: a Tool to Explore the Young Universe" (2015, Beijing, China),
accepted for publication in Space Science Review
Quantum state engineering with flux-biased Josephson phase qubits by Stark-chirped rapid adiabatic passages
In this paper, the scheme of quantum computing based on Stark chirped rapid
adiabatic passage (SCRAP) technique [L. F. Wei et al., Phys. Rev. Lett. 100,
113601 (2008)] is extensively applied to implement the quantum-state
manipulations in the flux-biased Josephson phase qubits. The broken-parity
symmetries of bound states in flux-biased Josephson junctions are utilized to
conveniently generate the desirable Stark-shifts. Then, assisted by various
transition pulses universal quantum logic gates as well as arbitrary
quantum-state preparations could be implemented. Compared with the usual
PI-pulses operations widely used in the experiments, the adiabatic population
passage proposed here is insensitive the details of the applied pulses and thus
the desirable population transfers could be satisfyingly implemented. The
experimental feasibility of the proposal is also discussed.Comment: 9 pages, 4 figure
- …