632 research outputs found

    Strategy and Long-term Outcomes of Endovascular Treatment for Budd–Chiari Syndrome Complicated by Inferior Vena Caval Thrombosis

    Get PDF
    ObjectivesThe aim of this study was to evaluate the strategy and long-term outcomes of endovascular treatment of Budd–Chiari syndrome (BCS) complicated by inferior vena cava (IVC) thrombosis.MethodsThe treatment strategy and outcomes of BCS complicated by IVC thrombosis were retrospectively evaluated in a single-center study. The treatment was aimed at the IVC thrombus, not hepatic vein occlusion. All 133 patients with BCS complicated by IVC thrombosis from February 2003 to March 2013 underwent endovascular treatment. For the fresh thrombus group (n = 75) recanalization was performed after transcatheter thrombolysis with urokinase. For the mixed thrombus group (n = 19) a small balloon pre-dilation of the IVC was performed first, followed by transcatheter thrombolysis using urokinase and a large balloon dilation of the IVC. For the old thrombus group (n = 39) a large balloon dilation or/and stent placement was performed directly. Pre- and post-treatment follow-ups were recorded.ResultsThe endovascular treatment was successful in 131 out of 133 patients (98.5%). Thirty seven patients had synchronous hepatic vein occlusion. The incidence of serious complications was 4.5% (6/133). Symptomatic pulmonary embolism occurred in three cases, cerebral hemorrhage in two, and cardiac tamponade in one. The cumulative 1-, 5-, and 10-year primary patency rate was 96.3%, 84.0%, and 64.6%, respectively. The cumulative 1-, 5-, and 10-year secondary patency rate was 99.0%, 96.1% and 91.3%, respectively. Segmental occlusion of the IVC and duration of anticoagulant therapy less than 6 months were independent risk factors for reocclusion.ConclusionsFor patients with BCS complicated by IVC thrombosis, an individualized treatment strategy based on the property of the thrombus can result in excellent long-term patency

    Faulty node repair and dynamically spawned black hole search

    Get PDF
    New threats to networks are constantly arising. This justifies protecting network assets and mitigating the risk associated with attacks. In a distributed environment, researchers aim, in particular, at eliminating faulty network entities. More specifically, much research has been conducted on locating a single static black hole, which is defined as a network site whose existence is known a priori and that disposes of any incoming data without leaving any trace of this occurrence. However, the prevalence of faulty nodes requires an algorithm able to (a) identify faulty nodes that can be repaired without human intervention and (b) locate black holes, which are taken to be faulty nodes whose repair does require human intervention. In this paper, we consider a specific attack model that involves multiple faulty nodes that can be repaired by mobile software agents, as well as a virus v that can infect a previously repaired faulty node and turn it into a black hole. We refer to the task of repairing multiple faulty nodes and pointing out the location of the black hole as the Faulty Node Repair and Dynamically Spawned Black Hole Search. Wefirst analyze the attack model we put forth. We then explain (a) how to identify whether a node is either (1) a normal node or (2) a repairable faulty node or (3) the black hole that has been infected by virus v during the search/repair process and, (b) how to perform the correct relevant actions. These two steps constitute a complex task, which, we explain, significantly differs from the traditional Black Hole Search. We continue by proposing an algorithm to solve this problem in an

    Effects of injection pressure variation on mixing in a cold supersonic combustor with kerosene fuel

    Get PDF
    Abstract: Spray jet in cold kerosene-fueled supersonic flow has been characterized under different injection pressures to assess the effects of the pressure variation on the mixing between incident shock wave and transverse cavity injection. Based on the real scramjet combustor, a detailed computational fluid dynamics model is developed. The injection pressures are specified as 0.5, 1.0, 2.0, 3.0 and 4.0 MPa, respectively, with the other constant operation parameters (such as the injection diameter, angle and velocity). A three dimensional Couple Level Set & Volume of Fluids approach incorporating an improved Kelvin-Helmholtz & Rayleigh-Taylor model is used to investigate the interaction between kerosene and supersonic air. The numerical simulations primarily concentrate on penetration depth, span expansion area, angle of shock wave and sauter mean diameter distribution of the kerosene droplets with/without evaporation. Validation has been implemented by comparing the calculated against the measured in literature with good qualitative agreement. Results show that the penetration depth, span-wise angle and expansion area of the transverse cavity jet are all increased with the injection pressure. However, when the injection pressure is further increased, the value in either penetration depth or expansion area increases appreciably. This study demonstrates the feasibility and effectiveness of the combination of Couple Level Set & Volume of Fluids approach and an improved Kelvin-Helmholtz & Rayleigh-Taylor model, in turn providing insights into scramjet design improvement

    A Novel Self-aligned and Maskless Process for Formation of Highly Uniform Arrays of Nanoholes and Nanopillars

    Get PDF
    Fabrication of a large area of periodic structures with deep sub-wavelength features is required in many applications such as solar cells, photonic crystals, and artificial kidneys. We present a low-cost and high-throughput process for realization of 2D arrays of deep sub-wavelength features using a self-assembled monolayer of hexagonally close packed (HCP) silica and polystyrene microspheres. This method utilizes the microspheres as super-lenses to fabricate nanohole and pillar arrays over large areas on conventional positive and negative photoresist, and with a high aspect ratio. The period and diameter of the holes and pillars formed with this technique can be controlled precisely and independently. We demonstrate that the method can produce HCP arrays of hole of sub-250 nm size using a conventional photolithography system with a broadband UV source centered at 400 nm. We also present our 3D FDTD modeling, which shows a good agreement with the experimental results

    Four Lessons in Versatility or How Query Languages Adapt to the Web

    Get PDF
    Exposing not only human-centered information, but machine-processable data on the Web is one of the commonalities of recent Web trends. It has enabled a new kind of applications and businesses where the data is used in ways not foreseen by the data providers. Yet this exposition has fractured the Web into islands of data, each in different Web formats: Some providers choose XML, others RDF, again others JSON or OWL, for their data, even in similar domains. This fracturing stifles innovation as application builders have to cope not only with one Web stack (e.g., XML technology) but with several ones, each of considerable complexity. With Xcerpt we have developed a rule- and pattern based query language that aims to give shield application builders from much of this complexity: In a single query language XML and RDF data can be accessed, processed, combined, and re-published. Though the need for combined access to XML and RDF data has been recognized in previous work (including the W3C’s GRDDL), our approach differs in four main aspects: (1) We provide a single language (rather than two separate or embedded languages), thus minimizing the conceptual overhead of dealing with disparate data formats. (2) Both the declarative (logic-based) and the operational semantics are unified in that they apply for querying XML and RDF in the same way. (3) We show that the resulting query language can be implemented reusing traditional database technology, if desirable. Nevertheless, we also give a unified evaluation approach based on interval labelings of graphs that is at least as fast as existing approaches for tree-shaped XML data, yet provides linear time and space querying also for many RDF graphs. We believe that Web query languages are the right tool for declarative data access in Web applications and that Xcerpt is a significant step towards a more convenient, yet highly efficient data access in a “Web of Data”

    Quantum Correlation in One-dimensional Extend Quantum Compass Model

    Full text link
    We study the correlations in the one-dimensional extended quantum compass model in a transverse magnetic field. By exactly solving the Hamiltonian, we find that the quantum correlation of the ground state of one-dimensional quantum compass model is vanishing. We show that quantum discord can not only locate the quantum critical points, but also discern the orders of phase transitions. Furthermore, entanglement quantified by concurrence is also compared.Comment: 8 pages, 14 figures, to appear in Eur. Phys. J.

    Observational constraint on generalized Chaplygin gas model

    Get PDF
    We investigate observational constraints on the generalized Chaplygin gas (GCG) model as the unification of dark matter and dark energy from the latest observational data: the Union SNe Ia data, the observational Hubble data, the SDSS baryon acoustic peak and the five-year WMAP shift parameter. It is obtained that the best fit values of the GCG model parameters with their confidence level are As=0.730.06+0.06A_{s}=0.73^{+0.06}_{-0.06} (1σ1\sigma) 0.09+0.09^{+0.09}_{-0.09} (2σ)(2\sigma), α=0.090.12+0.15\alpha=-0.09^{+0.15}_{-0.12} (1σ1\sigma) 0.19+0.26^{+0.26}_{-0.19} (2σ)(2\sigma). Furthermore in this model, we can see that the evolution of equation of state (EOS) for dark energy is similar to quiessence, and its current best-fit value is w0de=0.96w_{0de}=-0.96 with the 1σ1\sigma confidence level 0.91w0de1.00-0.91\geq w_{0de}\geq-1.00.Comment: 9 pages, 5 figure

    Interacting Ghost Dark Energy in Non-Flat Universe

    Full text link
    A new dark energy model called "ghost dark energy" was recently suggested to explain the observed accelerating expansion of the universe. This model originates from the Veneziano ghost of QCD. The dark energy density is proportional to Hubble parameter, ρD=αH\rho_D=\alpha H, where α\alpha is a constant of order ΛQCD3\Lambda_{\rm QCD}^3 and ΛQCD100MeV\Lambda_{\rm QCD}\sim 100 MeV is QCD mass scale. In this paper, we extend the ghost dark energy model to the universe with spatial curvature in the presence of interaction between dark matter and dark energy. We study cosmological implications of this model in detail. In the absence of interaction the equation of state parameter of ghost dark energy is always wD>1w_D > -1 and mimics a cosmological constant in the late time, while it is possible to have wD<1w_D < -1 provided the interaction is taken into account. When k=0k = 0, all previous results of ghost dark energy in flat universe are recovered. To check the observational consistency, we use Supernova type Ia (SNIa) Gold sample, shift parameter of Cosmic Microwave Background radiation (CMB) and the Baryonic Acoustic Oscillation peak from Sloan Digital Sky Survey (SDSS). The best fit values of free parameter at 1σ1\sigma confidence interval are: Ωm0=0.350.03+0.02\Omega_m^0= 0.35^{+0.02}_{-0.03}, ΩD0=0.750.04+0.01\Omega_D^0=0.75_{-0.04}^{+0.01} and b2=0.080.03+0.03b^2=0.08^{+0.03}_{-0.03}. Consequently the total energy density of universe at present time in this model at 68% level equates to Ωtot0=1.100.05+0.02\Omega_{\rm tot}^0=1.10^{+0.02}_{-0.05}.Comment: 19 pages, 9 figures. V2: Added comments, observational consequences, references, figures and major corrections. Accepted for publication in General Relativity and Gravitatio
    corecore