67,218 research outputs found
Reply to [arXiv:1105.5147] "Are GRB 090423 and Similar Bursts due to Superconducting Cosmic Strings?"
The GRB outflow driven by superconducting cosmic strings is likely to be an
arc rather than a usually-considered spherical cap. In such a case, the
afterglows of the cosmic string GRBs could be basically consistent with the
observation of the high-redshift GRBs.Comment: 2 pages, 1 figure, to appear in Phys. Rev. Let
Diverse Temporal Properties of GRB Afterglow
The detection of delayed X-ray, optical and radio emission, "afterglow",
associated with -ray bursts (GRBs) is consistent with fireball models,
where the emission are produced by relativistic expanding blast wave, driven by
expanding fireball at cosmogical distances. The emission mechanisms of GRB
afterglow have been discussed by many authors and synchrotron radiation is
believed to be the main mechanism. The observations show that the optical light
curves of two observed gamma-ray bursts, GRB970228 and GRB GRB970508, can be
described by a simple power law, which seems to support the synchrotron
radiation explanation. However, here we shall show that under some
circumstances, the inverse Compton scattering (ICS) may play an important role
in emission spectrum and this may influence the temporal properties of GRB
afterglow. We expect that the light curves of GRB afterglow may consist of
multi-components, which depends on the fireball parameters.Comment: Latex, no figures, minor correctio
SV-map between Type I and Heterotic Sigma Models
The scattering amplitudes of gauge bosons in heterotic and open superstring
theories are related by the single-valued projection which yields heterotic
amplitudes by selecting a subset of multiple zeta value coefficients in the
(string tension parameter) expansion of open string amplitudes. In
the present work, we argue that this relation holds also at the level of
low-energy expansions (or individual Feynman diagrams) of the respective
effective actions, by investigating the beta functions of two-dimensional sigma
models describing world-sheets of open and heterotic strings. We analyze the
sigma model Feynman diagrams generating identical effective action terms in
both theories and show that the heterotic coefficients are given by the
single-valued projection of the open ones. The single-valued projection appears
as a result of summing over all radial orderings of heterotic vertices on the
complex plane representing string world-sheet.Comment: 28 page
Composite Geometric Phase for Multipartite Entangled States
When an entangled state evolves under local unitaries, the entanglement in
the state remains fixed. Here we show the dynamical phase acquired by an
entangled state in such a scenario can always be understood as the sum of the
dynamical phases of its subsystems. In contrast, the equivalent statement for
the geometric phase is not generally true unless the state is separable. For an
entangled state an additional term is present, the mutual geometric phase, that
measures the change the additional correlations present in the entangled state
make to the geometry of the state space. For qubit states we find this
change can be explained solely by classical correlations for states with a
Schmidt decomposition and solely by quantum correlations for W states.Comment: 4 pages, 1 figure, improved presentation, results and conclusions
unchanged from v1. Accepted for publication in PR
Modeling the IDV emissions of the BL Lac Objects with a Langevin type stochastic differential equation
In this paper, we introduce a simplified model for explaining the
observations of the optical intraday variability (IDV) of the BL Lac Objects.
We assume that the source of the IDV are the stochastic oscillations of an
accretion disk around a supermassive black hole. The Stochastic Fluctuations on
the vertical direction of the accretion disk are described by using a Langevin
type equation with a damping term and a random, white noise type force.
Furthermore, the preliminary numerical simulation results are presented, which
are based on the numerical analysis of the Langevin stochastic differential
equation.Comment: 4 pages, 4 figures, accepted for publication in J. Astrophys. Ast
Is GRO J1744-28 a Strange Star?
The unusal hard x-ray burster GRO J1744-28 recently discovered by the Compton
Gamma-ray Observatory (GRO) can be modeled as a strange star with a dipolar
magnetic field Gauss. When the accreted mass of the star exceeds
some critical mass, its crust may break, resulting in conversion of the
accreted matter into strange matter and release of energy. Subsequently, a
fireball may form and expand relativistically outward. The expanding fireball
may interact with the surrounding interstellar medium, causing its kinetic
energy to be radiated in shock waves, producing a burst of x-ray radiation. The
burst energy, duration, interval and spectrum derived from such a model are
consistent with the observations of GRO J1744-28.Comment: Latex, has been published in SCIENCE, Vol. 280, 40
Suppression of low-energy Andreev states by a supercurrent in YBa_2Cu_3O_7-delta
We report a coherence-length scale phenomenon related to how the high-Tc
order parameter (OP) evolves under a directly-applied supercurrent. Scanning
tunneling spectroscopy was performed on current-carrying YBa_2Cu_3O_7-delta
thin-film strips at 4.2K. At current levels well below the theoretical
depairing limit, the low-energy Andreev states are suppressed by the
supercurrent, while the gap-like structures remain unchanged. We rule out the
likelihood of various extrinsic effects, and propose instead a model based on
phase fluctuations in the d-wave BTK formalism to explain the suppression. Our
results suggest that a supercurrent could weaken the local phase coherence
while preserving the pairing amplitude. Other possible scenarios which may
cause the observed phenomenon are also discussed.Comment: 6 pages, 4 figures, to appear in Physical Review
The topological glass in ring polymers
We study the dynamics of concentrated, long, semi-flexible, unknotted and unlinked ring polymers embedded in a gel by Monte Carlo simulation of a coarse-grained model. This involves the ansatz that the rings compactify into a duplex structure where they can be modelled as linear polymers. The classical polymer glass transition involves a rapid loss of microscopic freedom within the polymer molecule as the temperature is reduced toward Tg. Here we are interested in temperatures well above Tg where the polymers retain high microscopic mobility. We analyse the slowing of stress relaxation originating from inter-ring penetrations (threadings). For long polymers an extended network of quasi-topological penetrations forms. The longest relaxation time appears to depend exponentially on the ring polymer contour length, reminiscent of the usual exponential slowing (e.g., with temperature) in classical glasses. Finally, we discuss how this represents a universality class for glassy dynamics
- …