27,950 research outputs found
Vacuum induced Berry phases in single-mode Jaynes-Cummings models
Motivated by the work [Phys. Rev. Lett. 89, 220404 (2002)] for detecting the
vacuum-induced Berry phases with two-mode Jaynes-Cummings models (JCMs), we
show here that, for a parameter-dependent single-mode JCM, certain atom-field
states also acquire the photon-number-dependent Berry phases after the
parameter slowly changed and eventually returned to its initial value. This
geometric effect related to the field quantization still exists, even the filed
is kept in its vacuum state. Specifically, a feasible Ramsey interference
experiment with cavity quantum electrodynamics (QED) system is designed to
detect the vacuum-induced Berry phase.Comment: 10 pages, 4 figures
Morphological evolution of a 3D CME cloud reconstructed from three viewpoints
The propagation properties of coronal mass ejections (CMEs) are crucial to
predict its geomagnetic effect. A newly developed three dimensional (3D) mask
fitting reconstruction method using coronagraph images from three viewpoints
has been described and applied to the CME ejected on August 7, 2010. The CME's
3D localisation, real shape and morphological evolution are presented. Due to
its interaction with the ambient solar wind, the morphology of this CME changed
significantly in the early phase of evolution. Two hours after its initiation,
it was expanding almost self-similarly. CME's 3D localisation is quite helpful
to link remote sensing observations to in situ measurements. The investigated
CME was propagating to Venus with its flank just touching STEREO B. Its
corresponding ICME in the interplanetary space shows a possible signature of a
magnetic cloud with a preceding shock in VEX observations, while from STEREO B
only a shock is observed. We have calculated three principle axes for the
reconstructed 3D CME cloud. The orientation of the major axis is in general
consistent with the orientation of a filament (polarity inversion line)
observed by SDO/AIA and SDO/HMI. The flux rope axis derived by the MVA analysis
from VEX indicates a radial-directed axis orientation. It might be that locally
only the leg of the flux rope passed through VEX. The height and speed profiles
from the Sun to Venus are obtained. We find that the CME speed possibly had
been adjusted to the speed of the ambient solar wind flow after leaving COR2
field of view and before arriving Venus. A southward deflection of the CME from
the source region is found from the trajectory of the CME geometric center. We
attribute it to the influence of the coronal hole where the fast solar wind
emanated from.Comment: ApJ, accepte
Switchable coupling between charge and flux qubits
We propose a hybrid quantum circuit with both charge and flux qubits
connected to a large Josephson junction that gives rise to an effective
inter-qubit coupling controlled by the external magnetic flux. This switchable
inter-qubit coupling can be used to transfer back and forth an arbitrary
superposition state between the charge qubit and the flux qubit working at the
optimal point. The proposed hybrid circuit provides a promising quantum memory
because the flux qubit at the optimal point can store the tranferred quantum
state for a relatively long time.Comment: 5 pages, 1 figur
Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit
We analyze the optical selection rules of the microwave-assisted transitions
in a flux qubit superconducting quantum circuit (SQC). We show that the
parities of the states relevant to the superconducting phase in the SQC are
well-defined when the external magnetic flux , then the
selection rules are same as the ones for the electric-dipole transitions in
usual atoms. When , the symmetry of the potential of
the artificial "atom'' is broken, a so-called -type "cyclic"
three-level atom is formed, where one- and two-photon processes can coexist. We
study how the population of these three states can be selectively transferred
by adiabatically controlling the electromagnetic field pulses. Different from
-type atoms, the adiabatic population transfer in our three-level
-atom can be controlled not only by the amplitudes but also by the
phases of the pulses
Geometric entanglement from matrix product state representations
An efficient scheme to compute the geometric entanglement per lattice site
for quantum many-body systems on a periodic finite-size chain is proposed in
the context of a tensor network algorithm based on the matrix product state
representations. It is systematically tested for three prototypical critical
quantum spin chains, which belong to the same Ising universality class. The
simulation results lend strong support to the previous claim [Q.-Q. Shi, R.
Or\'{u}s, J. O. Fj{\ae}restad, and H.-Q. Zhou, New J. Phys \textbf{12}, 025008
(2010); J.-M. St\'{e}phan, G. Misguich, and F. Alet, Phys. Rev. B \textbf{82},
180406R (2010)] that the leading finite-size correction to the geometric
entanglement per lattice site is universal, with its remarkable connection to
the celebrated Affleck-Ludwig boundary entropy corresponding to a conformally
invariant boundary condition.Comment: 4+ pages, 3 figure
- …