65,281 research outputs found

    Precise Formulation of Neutrino Oscillation in the Earth

    Full text link
    We give a perturbation theory of neutrino oscillation in the Earth. The perturbation theory is valid for neutrinos with energy E \gsim 0.5 GeV. It is formulated using trajectory dependent average potential. Non-adiabatic contributions are included as the first order effects in the perturbation theory. We analyze neutrino oscillation with standard matter effect and with non-standard matter effect. In a three flavor analysis we show that the perturbation theory gives a precise description of neutrino conversion in the Earth. Effect of the Earth matter is substantially simplified in this formulation.Comment: References added, 21 pages, 10 figures, version to appear in PR

    Contractors Perspective on the Selection of Innovative Sustainable Technologies for Achieving Zero Carbon Retail Buildings

    Get PDF
    The use of innovative sustainable technologies (IST) has been regarded as an effective approach to enhancing energy efficiency and reducing carbon emissions of buildings. However, contractors face significant challenges in the selection of IST. The reported challenges in the literature include: lack of skills and knowledge, uncertainties, risks and the rapid development of a large number of technological alternatives and decision criteria. The selection process emerges as a multi-attribute, value-based task that includes both qualitative and quantitative factors, which are often assessed with imprecise data and human judgments. This paper aims to establish the decision criteria for the selection of IST for achieving low carbon existing retail buildings with a focus on the main contractor’s perspective. The arguments are informed by the combination of literature review and an in-depth case study with a UK leading contractor. Five broad decision criteria are identified systematically drawing on the contractor’s practice. The established criteria are weighted and ranked using the analytic hierarchy process and expert opinions; with ‘margin opportunity’ being the most important, followed by ‘repeat business’, ‘investment costs’, ‘differentiation’ and then ‘transferability’. The findings should facilitate the integration of various facets of the selection process and stimulate contractors to use IST

    The Physics of Weld Bead Defects

    Get PDF

    On periodic solutions of nonlinear evolution equations in Banach spaces

    Get PDF
    We prove an existence result for T-periodic solutions to nonlinear evolution equations of the form x(t)+A(t.x(t))=f(t.x(t)). O<t<T. Here VHV* is an evolution triple, A :I×V→V* is a uniformly monotone operator, and f :I×H→V* is a Caratheodory mapping which is Hölder continuous with respect to x in H and exponent 0<1. For illustration, an example of a quasi-linear parabolic differential equation is worked out in detail

    Development of a 3D dynamic programming method for weather routing

    Get PDF
    This paper presents a novel forward dynamic programming method for weather routing to minimize ship fuel consumption during a voyage. Compared with the traditional two dimensional dynamic programming (2DDP) methods which only optimize the ship’s heading, while the engine power or propeller rotation speed are set as a constant throughout the voyage, this new method considers both the ship power setting and heading control. A float state technique is used to reduce the iteration on the process of optimization for computing time saving. This new method could lead to a real global-optimal routing in a comparison with a tradition weather routing method which results in a sub-optimal routing

    Probing the plateau-insulator quantum phase transition in the quantum Hall regime

    Get PDF
    We report quantum Hall experiments on the plateau-insulator transition in a low mobility In_{.53} Ga_{.47} As/InP heterostructure. The data for the longitudinal resistance \rho_{xx} follow an exponential law and we extract a critical exponent \kappa= .55 \pm .05 which is slightly different from the established value \kappa = .42 \pm .04 for the plateau transitions. Upon correction for inhomogeneity effects, which cause the critical conductance \sigma_{xx}^* to depend marginally on temperature, our data indicate that the plateau-plateau and plateau- insulator transitions are in the same universality class.Comment: 4 pages, 4 figures (.eps

    Suppression of low-energy Andreev states by a supercurrent in YBa_2Cu_3O_7-delta

    Full text link
    We report a coherence-length scale phenomenon related to how the high-Tc order parameter (OP) evolves under a directly-applied supercurrent. Scanning tunneling spectroscopy was performed on current-carrying YBa_2Cu_3O_7-delta thin-film strips at 4.2K. At current levels well below the theoretical depairing limit, the low-energy Andreev states are suppressed by the supercurrent, while the gap-like structures remain unchanged. We rule out the likelihood of various extrinsic effects, and propose instead a model based on phase fluctuations in the d-wave BTK formalism to explain the suppression. Our results suggest that a supercurrent could weaken the local phase coherence while preserving the pairing amplitude. Other possible scenarios which may cause the observed phenomenon are also discussed.Comment: 6 pages, 4 figures, to appear in Physical Review

    The X-ray afterglow of GRB 081109A: clue to the wind bubble structure

    Full text link
    We present the prompt BAT and afterglow XRT data of Swift-discovered GRB081109A up to ~ 5\times 10^5 sec after the trigger, and the early ground-based optical follow-ups. The temporal and spectral indices of the X-ray afterglow emission change remarkably. We interpret this as the GRB jet first traversing the freely expanding supersonic stellar wind of the progenitor with density varying as ρr2\rho \propto r^{-2}. Then after approximately 300 sec the jet traverses into a region of apparent constant density similar to that expected in the stalled-wind region of a stellar wind bubble or the interstellar medium (ISM). The optical afterglow data are generally consistent with such a scenario. Our best numerical model has a wind density parameter {A0.02A_{*} \sim 0.02, a density of the stalled wind n0.12cm3n\sim 0.12 {\rm cm}^{-3}, and a transition radius 4.5×1017 \sim 4.5 \times 10^{17} cm}. Such a transition radius is smaller than that predicted by numerical simulations of the stellar wind bubbles and may be due to a rapidly evolving wind of the progenitor close to the time of its core-collapse.Comment: 7 pages, 5 figures, 2 tables, MNRAS accepted for publicatio
    corecore