6,970 research outputs found

    Relativistic description of magnetic moments in nuclei with doubly closed shells plus or minus one nucleon

    Full text link
    Using the relativistic point-coupling model with density functional PC-PK1, the magnetic moments of the nuclei 207^{207}Pb, 209^{209}Pb, 207^{207}Tl and 209^{209}Bi with a jjjj closed-shell core 208^{208}Pb are studied on the basis of relativistic mean field (RMF) theory. The corresponding time-odd fields, the one-pion exchange currents, and the first- and second-order corrections are taken into account. The present relativistic results reproduce the data well. The relative deviation between theory and experiment for these four nuclei is 6.1% for the relativistic calculations and somewhat smaller than the value of 13.2% found in earlier non-relativistic investigations. It turns out that the π\pi meson is important for the description of magnetic moments, first by means of one-pion exchange currents and second by the residual interaction provided by the π\pi exchange.Comment: 11 pages, 7 figure

    Possible JPC=0+−J^{PC} = 0^{+-} Exotic State

    Full text link
    We study the possible exotic states with JPC=0+−J^{PC} = 0^{+-} using the tetraquark interpolating currents with the QCD sum rule approach. The extracted masses are around 4.85 GeV for the charmonium-like states and 11.25 GeV for the bottomomium-like states. There is no working region for the light tetraquark currents, which implies the light 0+−0^{+-} state may not exist below 2 GeV.Comment: 13 pages, 11 figures, 2 table

    Biological denitrification in an anoxic sequencing batch biofilm reactor: Performance evaluation, nitrous oxide emission and microbial community

    Full text link
    © 2019 The present study evaluated the performance of biological denitrification in an anoxic sequencing batch biofilm reactor (ASBBR) and its nitrous oxide (N2O) emission. After 90 days operation, the effluent chemical oxygen demand and total nitrogen removal efficiencies high of 94.8% and 95.0%, respectively. Both polysaccharides and protein contents were reduced in bound EPS (TB-EPS) and loosely bound EPS (LB-EPS) after biofilm formation. According to typical cycle, N2O release rate was related to the free nitrous acid (FNA) concentration with the maximum value of 3.88 μg/min and total conversion rate of 1.27%. Two components were identified from EEM-PARAFAC model in soluble microbial products (SMP). Protein-like substances for component 1 changed significantly in denitrification process, whereas humic-like and fulvic acid-like substances for component 2 remained relatively stable. High-throughput sequencing results showed that Lysobacter, Tolumonas and Thauera were the dominant genera, indicating the co-existence of autotrophic and heterotrophic denitrifiers in ASBBR

    Preparation and thermal properties of mesoporous silica/phenolic resin nanocomposites via in situ polymerization

    Get PDF
    In order to enhance the adhesion between inorganic particles and polymer matrix, in this paper, the mesoporous silica SBA-15 material was synthesized by the sol-gel method. The surface of SBA-15 was modified using γ-glycidyloxypropyltrimethoxysilane (GOTMS) as a coupling agent, and then mesoporous silica/phenolic resin (SBA-15/PF) nanocomposites were prepared via in situ polymerization. The structural parameters and physical properties of SBA-15, SBA-15-GOTMS (SBA-15 surface treated using GOTMS as coupling agents) and E-SBA-15/PF (SBA-15/PF nanocomposites extracted using ethanol as solvent) were characterized by X-ray diffraction (XRD), N2 adsorption-desorption, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The thermal properties of the nanocomposites were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results demonstrated that the GOTMS were successfully grafted onto the surface of SBA-15, and chemical bonds between PF and SBA-15-GOTMS were formed after in situ polymerization. In addition, it is found that the in situ polymerization method has great effects on the textural parameters of SBA-15. The results also showed that the glass transition temperatures and thermal stability of the PF nanocomposites were obviously enhanced as compared with the pure PF at silica contents between 1–3 wt%, due to the uniform dispersion of the modified SBA-15 in the matrix
    • …
    corecore