72,704 research outputs found

    The Ultraviolet flash accompanying GRBs from neutron-rich internal shocks

    Full text link
    In the neutron-rich internal shocks model for Gamma-ray Burts (GRBs), the Lorentz factors (LFs) of ions shells are variable, so are the LFs of accompanying neutron shells. For slow neutron shells with a typical LF tens, the typical beta-decay radius reads R_{\beta,s} several 10^{14} cm, which is much larger than the typical internal shocks radius 10^{13} cm, so their impact on the internal shocks may be unimportant. However, as GRBs last long enough (T_{90}>20(1+z) s), one earlier but slower ejected neutron shell will be swept successively by later ejected ion shells in the range 10^{13}-10^{15} cm, where slow neutrons have decayed significantly. We show in this work that ion shells interacting with the beta-decay products of slow neutron shells can power a ultraviolet (UV) flash bright to 12th magnitude during the prompt gamma-ray emission phase or slightly delayed, which can be detected by the upcoming Satellite SWIFT in the near future.Comment: 6 pages (2 eps figures), accepted for publication in ApJ

    Diverse Temporal Properties of GRB Afterglow

    Full text link
    The detection of delayed X-ray, optical and radio emission, "afterglow", associated with γ\gamma-ray bursts (GRBs) is consistent with fireball models, where the emission are produced by relativistic expanding blast wave, driven by expanding fireball at cosmogical distances. The emission mechanisms of GRB afterglow have been discussed by many authors and synchrotron radiation is believed to be the main mechanism. The observations show that the optical light curves of two observed gamma-ray bursts, GRB970228 and GRB GRB970508, can be described by a simple power law, which seems to support the synchrotron radiation explanation. However, here we shall show that under some circumstances, the inverse Compton scattering (ICS) may play an important role in emission spectrum and this may influence the temporal properties of GRB afterglow. We expect that the light curves of GRB afterglow may consist of multi-components, which depends on the fireball parameters.Comment: Latex, no figures, minor correctio

    Can the jet steepen the light curves of GRB afterglow?

    Full text link
    Beaming of relativistic ejecta in GRBs has been postulated by many authors in order to reduce the total GRB energy, thus it is very important to look for the observational evidence of beaming. Rhoads (1999) has pointed out that the dynamics of the blast wave, which is formed when the beamed ejecta sweeping the external medium, will be significantly modified by the sideways expansion due to the increased swept up matter. He claimed that shortly after the bulk Lorentz factor (Γ\Gamma ) of the blast wave drops below the inverse of the initial opening angle (θ0\theta_{0}) of the beamed ejecta, there will be a sharp break in the afterglow light curves. However, some other authors have performed numerical calculations and shown that the break of the light curve is weaker and much smoother than the one analytically predicted. In this paper we reanalyse the dynamical evolution of the jet blast wave, calculate the jet emission analytically, we find that the sharp break predicted by Rhoads will actually not exist, and for most cases the afterglow light curve will almost not be affected by sideways expansion unless the beaming angle is extremely small. We demonstrate that only when θ0<0.1\theta_{0}<0.1, the afterglow light curves may be steepened by sideways expansion, and in fact there cannot be two breaks as claimed before. We have also constructed a simple numerical code to verify our conclusion.Comment: 12 pages, 2 figures, accepted by ApJ, added numerical calculation
    • …
    corecore