17,015 research outputs found
Solving systems of phaseless equations via Kaczmarz methods: A proof of concept study
We study the Kaczmarz methods for solving systems of quadratic equations,
i.e., the generalized phase retrieval problem. The methods extend the Kaczmarz
methods for solving systems of linear equations by integrating a phase
selection heuristic in each iteration and overall have the same per iteration
computational complexity. Extensive empirical performance comparisons establish
the computational advantages of the Kaczmarz methods over other
state-of-the-art phase retrieval algorithms both in terms of the number of
measurements needed for successful recovery and in terms of computation time.
Preliminary convergence analysis is presented for the randomized Kaczmarz
methods
Assignments of and baryons in the heavy quark-light diquark picture
We apply a new mass formula which is derived analytically in the relativistic
flux tube model to the mass spectra of and (\emph{Q} =
\emph{c} or \emph{b} quark) baryons. To this end, the heavy quark-light diquark
picture is employed. We find that all masses of the available and
states can be understood well. The assignments to these states do not
appear to contradict the strong decay properties. and
are assigned to the first radial excitations with .
and might be the 2\emph{P} states. The
and are the good 1\emph{D} candidates with
. is likely to be a 1\emph{D} state with . and favor the 1\emph{P}
assignments with and , respectively. We propose a search
for the state which can help to distinguish the
diquark and three-body schemes.Comment: 9 tables, more discussions and references adde
Many Hard Examples in Exact Phase Transitions with Application to Generating Hard Satisfiable Instances
This paper first analyzes the resolution complexity of two random CSP models
(i.e. Model RB/RD) for which we can establish the existence of phase
transitions and identify the threshold points exactly. By encoding CSPs into
CNF formulas, it is proved that almost all instances of Model RB/RD have no
tree-like resolution proofs of less than exponential size. Thus, we not only
introduce new families of CNF formulas hard for resolution, which is a central
task of Proof-Complexity theory, but also propose models with both many hard
instances and exact phase transitions. Then, the implications of such models
are addressed. It is shown both theoretically and experimentally that an
application of Model RB/RD might be in the generation of hard satisfiable
instances, which is not only of practical importance but also related to some
open problems in cryptography such as generating one-way functions.
Subsequently, a further theoretical support for the generation method is shown
by establishing exponential lower bounds on the complexity of solving random
satisfiable and forced satisfiable instances of RB/RD near the threshold.
Finally, conclusions are presented, as well as a detailed comparison of Model
RB/RD with the Hamiltonian cycle problem and random 3-SAT, which, respectively,
exhibit three different kinds of phase transition behavior in NP-complete
problems.Comment: 19 pages, corrected mistakes in Theorems 5 and
Painless Breakups -- Efficient Demixing of Low Rank Matrices
Assume we are given a sum of linear measurements of different rank-
matrices of the form . When and under
which conditions is it possible to extract (demix) the individual matrices
from the single measurement vector ? And can we do the demixing
numerically efficiently? We present two computationally efficient algorithms
based on hard thresholding to solve this low rank demixing problem. We prove
that under suitable conditions these algorithms are guaranteed to converge to
the correct solution at a linear rate. We discuss applications in connection
with quantum tomography and the Internet-of-Things. Numerical simulations
demonstrate empirically the performance of the proposed algorithms
- β¦