10,329 research outputs found

    A detection theory account of change detection

    Get PDF
    Previous studies have suggested that visual short-term memory (VSTM) has a storage limit of approximately four items. However, the type of high-threshold (HT) model used to derive this estimate is based on a number of assumptions that have been criticized in other experimental paradigms (e.g., visual search). Here we report findings from nine experiments in which VSTM for color, spatial frequency, and orientation was modeled using a signal detection theory (SDT) approach. In Experiments 1-6, two arrays composed of multiple stimulus elements were presented for 100 ms with a 1500 ms ISI. Observers were asked to report in a yes/no fashion whether there was any difference between the first and second arrays, and to rate their confidence in their response on a 1-4 scale. In Experiments 1-3, only one stimulus element difference could occur (T = 1) while set size was varied. In Experiments 4-6, set size was fixed while the number of stimuli that might change was varied (T = 1, 2, 3, and 4). Three general models were tested against the receiver operating characteristics generated by the six experiments. In addition to the HT model, two SDT models were tried: one assuming summation of signals prior to a decision, the other using a max rule. In Experiments 7-9, observers were asked to directly report the relevant feature attribute of a stimulus presented 1500 ms previously, from an array of varying set size. Overall, the results suggest that observers encode stimuli independently and in parallel, and that performance is limited by internal noise, which is a function of set size

    Bi-collinear antiferromagnetic order in the tetragonal α\alpha-FeTe

    Full text link
    By the first-principles electronic structure calculations, we find that the ground state of PbO-type tetragonal α\alpha-FeTe is in a bi-collinear antiferromagnetic state, in which the Fe local moments (2.5μB\sim2.5\mu_B) are ordered ferromagnetically along a diagonal direction and antiferromagnetically along the other diagonal direction on the Fe square lattice. This bi-collinear order results from the interplay among the nearest, next nearest, and next next nearest neighbor superexchange interactions J1J_1, J2J_2, and J3J_3, mediated by Te 5p5p-band. In contrast, the ground state of α\alpha-FeSe is in the collinear antiferromagnetic order, similar as in LaFeAsO and BaFe2_2As2_2.Comment: 5 pages and 5 figure

    The role of sensory uncertainty in simple contour integration

    Get PDF
    Perceptual organization is the process of grouping scene elements into whole entities. A classic example is contour integration, in which separate line segments are perceived as continuous contours. Uncertainty in such grouping arises from scene ambiguity and sensory noise. Some classic Gestalt principles of contour integration, and more broadly, of perceptual organization, have been re-framed in terms of Bayesian inference, whereby the observer computes the probability that the whole entity is present. Previous studies that proposed a Bayesian interpretation of perceptual organization, however, have ignored sensory uncertainty, despite the fact that accounting for the current level of perceptual uncertainty is one the main signatures of Bayesian decision making. Crucially, trial-by-trial manipulation of sensory uncertainty is a key test to whether humans perform near-optimal Bayesian inference in contour integration, as opposed to using some manifestly non-Bayesian heuristic. We distinguish between these hypotheses in a simplified form of contour integration, namely judging whether two line segments separated by an occluder are collinear. We manipulate sensory uncertainty by varying retinal eccentricity. A Bayes-optimal observer would take the level of sensory uncertainty into account-in a very specific way-in deciding whether a measured offset between the line segments is due to non-collinearity or to sensory noise. We find that people deviate slightly but systematically from Bayesian optimality, while still performing "probabilistic computation" in the sense that they take into account sensory uncertainty via a heuristic rule. Our work contributes to an understanding of the role of sensory uncertainty in higher-order perception. Author summary Our percept of the world is governed not only by the sensory information we have access to, but also by the way we interpret this information. When presented with a visual scene, our visual system undergoes a process of grouping visual elements together to form coherent entities so that we can interpret the scene more readily and meaningfully. For example, when looking at a pile of autumn leaves, one can still perceive and identify a whole leaf even when it is partially covered by another leaf. While Gestalt psychologists have long described perceptual organization with a set of qualitative laws, recent studies offered a statistically-optimal-Bayesian, in statistical jargon-interpretation of this process, whereby the observer chooses the scene configuration with the highest probability given the available sensory inputs. However, these studies drew their conclusions without considering a key actor in this kind of statistically-optimal computations, that is the role of sensory uncertainty. One can easily imagine that our decision on whether two contours belong to the same leaf or different leaves is likely going to change when we move from viewing the pile of leaves at a great distance (high sensory uncertainty), to viewing very closely (low sensory uncertainty). Our study examines whether and how people incorporate uncertainty into contour integration, an elementary form of perceptual organization, by varying sensory uncertainty from trial to trial in a simple contour integration task. We found that people indeed take into account sensory uncertainty, however in a way that subtly deviates from optimal behavior.Peer reviewe

    Testing the Bayesian confidence hypothesis

    Get PDF
    Asking subjects to rate their confidence is one of the oldest procedures in psychophysics. Remarkably, quantitative models of confidence ratings have been scarce. The Bayesian confidence hypothesis (BCH) states that an observer’s confidence rating is monotonically related to the posterior probability of their choice. I will report tests of this hypothesis in two visual categorization tasks: one requiring rapid categorization of a single oriented stimulus, the other a deliberative judgment typically made by scientists, namely interpreting scatterplots. We find evidence against the Bayesian confidence hypothesis in both tasks
    corecore