648 research outputs found

    Dispersion-shifted all-solid high index-contrast microstructured optical fiber for nonlinear applications at 1.55µm

    No full text
    We report the fabrication of an all-solid highly nonlinear microstructured optical fiber. The structured preform was made by glass extrusion using two types of commercial lead silicate glasses that provide high index-contrast. Effectively single-moded guidance was observed in the fiber at 1.55µm. The effective nonlinearity and the propagation loss at this wavelength were measured to be 120W/km respectively at 1.55µm. These predictions are consistent with the experimentally determined dispersion of +12.5ps/nm/km at 1.55µm. Tunable and efficient four-wave-mixing based wavelength conversion was demonstrated at wavelengths around 1.55µm using a 1.5m length of the fiber

    Multichannel wavelength conversion of 40 Gbit/s NRZ DPSK signals in a highly nonlinear dispersion flattened lead silicate fibre

    No full text
    We experimentally demonstrate the wavelength conversion of three wavelength multiplexed 40 Gbit/s Differential Phase Shift Keyed (DPSK) signals in a 2.2m length of highly nonlinear, dispersion tailored W-type lead-silicate optical fibre

    Production of low formaldehyde emission particleboard by using new formulated formaldehyde based resin

    Get PDF
    In order to preserve the global market competitiveness, the particleboard industry was affronted with challenges to reduce formaldehyde emission while maintaining the quality strength properties of particleboard. To counter the issue, particleboards with five different surface-to-core ratio were fabricated by applying newly formulated UF and MUF resins which were 30% surface: 70% core (3:7); 40% surface: 60% core (4:6); 50% surface: 50% core (5:5); 60% surface: 40% core (6:4) and 70% surface: 30% core (7:3) based on dry particle weight respectively. Formaldehyde emission and strength properties of the fabricated particleboard were investigated based on Japanese Industrial Standard, which are JIS A 1460 and JIS A 5908, respectively. All the MUF-bonded particleboard complied with the type 18 standard, whereas all the UF-bonded particleboard produced complied with type 13 except thickness swelling of the UF-bonded particleboard. The surface-to-core ratio applied in three layered particleboard for both resins exerted considerable influence on the strength properties and formaldehyde emission of particleboards produced from both resins. MUF-bonded particleboard with 40% surface and 60% core recorded the lowest formaldehyde emission (0.09 mg L-1) and highest strength properties. For UF-bonded particleboard, the ratio of 60% surface and 40% core showed the lowest formaldehyde emission (0.28 mg L-1) with better strength properties. This study highlighted the potential of MUF resin to replace UF resin due to its ability to produce F**** particleboard with better strength properties and lower formaldehyde emission according to JIS A 5908

    Measurement of a reaction-diffusion crossover in exciton-exciton recombination inside carbon nanotubes using femtosecond optical absorption

    Get PDF
    Exciton-exciton recombination in isolated semiconducting single-walled carbon nanotubes was studied using femtosecond transient absorption. Under sufficient excitation to saturate the optical absorption, we observed an abrupt transition between reaction- and diffusion-limited kinetics, arising from reactions between incoherent localized excitons with a finite probability of ∼0.2 per encounter. This represents the first experimental observation of a crossover between classical and critical kinetics in a 1D coalescing random walk, which is a paradigm for the study of nonequilibrium systems. Copyright 2013 The American Physical Society. This is the author's version of a paper accepted for publication in Physical Review Letter

    Personal non-commercial use only

    Get PDF
    ABSTRACT. Objective. Studying statistical gene-gene interactions (epistasis) has been limited by the difficulties in performance, both statistically and computationally, in large enough sample numbers to gain sufficient power. Three large Immunochip datasets from cohort samples recruited in the United Kingdom, United States, and Sweden with European ancestry were used to examine epistasis in rheumatoid arthritis (RA). Methods. A full pairwise search was conducted in the UK cohort using a high-throughput tool and the resultant significant epistatic signals were tested for replication in the United States and Swedish cohorts. A forward selection approach was applied to remove redundant signals, while conditioning on the preidentified additive effects. Results. We detected abundant genome-wide significant (p < 1.0e-13) epistatic signals, all within the MHC region. These signals were reduced substantially, but a proportion remained significant (p < 1.0e-03) in conditional tests. We identified 11 independent epistatic interactions across the entire MHC, each explaining on average 0.12% of the phenotypic variance, nearly all replicated in both replication cohorts. We also identified non-MHC epistatic interactions between RA susceptible loci LOC100506023 and IRF5 with Immunochip-wide significance (p < 1.1e-08) and between 2 neighboring single-nucleotide polymorphism near PTPN22 that were in low linkage disequilibrium with independent interaction (p < 1.0e-05). Both non-MHC epistatic interactions were statistically replicated with a similar interaction pattern in the US cohort only. Conclusion. There are multiple but relatively weak interactions independent of the additive effects in RA and a larger sample number is required to confidently assign additional non-MHC epistasis

    Laser-induced crystalline optical waveguide on glass fibre

    No full text
    We report for the first time the fabrication of a novel glass ribbon fibre with laser-induced single (or quasi-single) crystalline (La,Yb)BGeO5 optical waveguide

    Inhibition of c-Jun NH2-terminal kinase stimulates mu opioid receptor expression via p38 MAPK-mediated nuclear NF-κB activation in neuronal and non-neuronal cells

    Get PDF
    AbstractDespite its potential side effects of addiction, tolerance and withdrawal symptoms, morphine is widely used for reducing moderate and severe pain. Previous studies have shown that the analgesic effect of morphine depends on mu opioid receptor (MOR) expression levels, but the regulatory mechanism of MOR is not yet fully understood. Several in vivo and in vitro studies have shown that the c-Jun NH2-terminal kinase (JNK) pathway is closely associated with neuropathic hyperalgesia, which closely resembles the neuroplastic changes observed with morphine antinociceptive tolerance. In this study, we show that inhibition of JNK by SP600125, its inhibitory peptide, or JNK-1 siRNA induced MOR at both mRNA and protein levels in neuronal cells. This increase in MOR expression was reversed by inhibition of the p38 mitogen-activated protein kinase (MAPK) pathway, but not by inhibition of the mitogen-activated protein/extracellular signal-regulated kinase (MEK) pathway. Further experiments using cell signaling inhibitors showed that MOR upregulation by JNK inhibition involved nuclear factor-kappa B (NF-κB). The p38 MAPK dependent phosphorylation of p65 NF-κB subunit in the nucleus was increased by SP600125 treatment. We also observed by chromatin immunoprecipitation (ChIP) analysis that JNK inhibition led to increased bindings of CBP and histone-3 dimethyl K4, and decreased bindings of HDAC-2, MeCP2, and histone-3 trimethyl K9 to the MOR promoter indicating a transcriptional regulation of MOR by JNK inhibition. All these results suggest a regulatory role of the p38 MAPK and NF-κB pathways in MOR gene expression and aid to our better understanding of the MOR gene regulation

    Translational repression of mouse mu opioid receptor expression via leaky scanning

    Get PDF
    Mu opioid receptor (MOR) expression is under temporal and spatial controls, but expression levels of the MOR gene are relatively low in vivo. In addition to transcriptional regulations, upstream AUGs (uAUGs) and open reading frames (uORFs) profoundly affect the translation of the primary ORF and thus the protein levels in several genes. The 5′-untranslated region (UTR) of mouse MOR mRNA contains three uORFs preceding the MOR main initiation codon. In MOR-fused EGFP or MOR promoter/luciferase reporter constructs, mutating each uAUG individually or in combinations increased MOR transient heterologous expression in neuroblastoma NMB and HEK293 cells significantly. Translation of such constructs increased up to 3-fold without altering the mRNA levels if either the third uAUG or both the second and third AUGs were mutated. Additionally, these uAUG-mediated translational inhibitions were independent of their peptide as confirmed by internal mutation analyses in each uORF. Translational studies indicated that protein syntheses were initiated at these uAUG initiation sites, with the third uAUG initiating the highest translation level. These results support the hypothesis that uORFs in mouse MOR mRNA act as negative regulators through a ribosome leaky scanning mechanism. Such leaky scanning resulted in the suppression of mouse MOR under normal conditions
    corecore