2,808 research outputs found

    Mechanisms and safety of air plasma inactivated SARS-CoV-2

    Full text link
    Cold atmospheric plasma (CAP) displays antimicrobial, antitumor, and antiviral properties, while the underlying mechanism is seldom clearly elucidated. In this work, we employed CAP with air-feeding gas to directly inactivate SARS-CoV-2. The results indicate that the typical SARS-CoV-2 morphological spikes disappeared after plasma treatment and the proteosomes of SRAS-CoV-2 were modified. In addition, we also evaluated the safety of the air plasma device in simulating daily life environments through rat experiments. We evaluated rats' daily physiological behavior, body weight, food consumption, organ histopathology, blood biochemical indicators, and so on. These results demonstrate air plasma device is a safe and effective mean prevents virus transmissions and infections

    Cost-Benefit Analysis of Phase Balancing Solution for Data-scarce LV Networks by Cluster-Wise Gaussian Process Regression

    Get PDF

    Cost-Benefit Analysis of Phase Balancing Solution for Data-scarce LV Networks by Cluster-Wise Gaussian Process Regression

    Get PDF
    Phase imbalance widely exists in the UK’s low voltage (415V, LV) distribution networks. The imbalances not only lead to insufficient use of LV network assets but also cause energy losses. They lead to hundreds of millions of British pounds each year in the UK. The cost-benefit analyses of phase balancing solutions remained an unresolved question for the majority of the LV networks. The main challenge is data-scarcity – these networks only have peak current and total energy consumption that are collected once a year. To perform a cost-benefit analysis of phase balancing for data-scarce LV networks, this paper develops a customized cluster-wise Gaussian process regression (CGPR) approach. The approach estimates the total cost of phase imbalance for any data-scarce LV network by extracting knowledge from a set of representative data-rich LV networks and extrapolating the knowledge to any data-scarce network. The imbalance-induced cost is then translated into the benefit from phase balancing and this is compared against the costs of phase balancing solutions, e.g. deploying phase balancers. The developed CGPR approach assists distribution network operators (DNOs) to evaluate the cost-benefit of phase balancing solutions for data-scarce networks without the need to invest in additional monitoring devices

    Exploring autophagy-related prognostic genes of Alzheimer's disease based on pathway crosstalk analysis

    Get PDF
    Recent studies have shown that different signaling pathways are involved in the pathogenesis of Alzheimer's disease (AD), with complex molecular connections existing between these pathways. Autophagy is crucial for the degradation and production of pathogenic proteins in AD, and it shows link with other AD-related pathways. However, current methods for identifying potential therapeutic targets for AD are primarily based on single-gene analysis or a single signal pathway, both of which are somewhat limited. Finding other methods is necessary for providing novel underlying AD therapeutic targets. Therefore, given the central role of autophagy in AD and its interplay with its pathways, we aimed to identify prognostic genes related to autophagy within and between these pathways based on pathway crosstalk analysis. The method of pathway analysis based on global influence (PAGI) was applied to find the feature mRNAs involved in the crosstalk between autophagy and other AD-related pathways. Subsequently, the weighted gene co-expression network analysis (WGCNA) was used to construct a co-expression module of feature mRNAs and differential lncRNAs. Finally, based on 2 autophagy-related crosstalk genes (CD40 and SMAD7), we constructed a prognosis model by multivariate Cox regression, which could predict the overall survival of AD patients with medium-to-high accuracy. In conclusion, we provided an effective method for extracting autophagy-related significant genes based on pathway crosstalk in AD. We found the biomarkers valuable to the AD prognosis, which may also play an essential role in the development and treatment of AD

    Improved efficacy and reduced toxicity of doxorubicin encapsulated in sulfatide-containing nanoliposome in a glioma model

    Get PDF
    As a glycosphingolipid that can bind to several extracellular matrix proteins, sulfatide has the potential to become an effective targeting agent for tumors overexpressing tenasin-C in their microenvironment. To overcome the dose-limiting toxicity of doxorubicin (DOX), a sulfatide-containing nanoliposome (SCN) encapsulation approach was employed to improve treatment efficacy and reduce side effects of free DOX. This study analysed in vitro characteristics of sulfatidecontaining nanoliposomal DOX (SCN-DOX) and assessed its cytotoxicity in vitro, as well as biodistribution, therapeutic efficacy, and systemic toxicity in a human glioblastoma U-118MG xenograft model. SCN-DOX was shown to achieve highest drug to lipid ratio (0.5:1) and a remarkable in vitro stability. Moreover, DOX encapsulated in SCN was shown to be delivered into the nuclei and displayed prolonged retention over free DOX in U-118MG cells. This simple two-lipid SCN- DOX nanodrug has favourable pharmacokinetic attributes in terms of prolonged circulation time, reduced volume of distribution and enhanced bioavailability in healthy rats. As a result of the improved biodistribution, an enhanced treatment efficacy of SCNDOX was found in glioma-bearing mice compared to the free drug. Finally, a reduction in the accumulation of DOX in the drug’s principal toxicity organs achieved by SCN-DOX led to the diminished systemic toxicity as evident from the plasma biochemical analyses. Thus, SCN has the potential to be an effective and safer nano-carrier for targeted delivery of therapeutic agents to tumors with elevated expression of tenascin-C in their microenvironment

    tRNASer(CGA) differentially regulates expression of wild-type and codon-modified papillomavirus L1 genes

    Get PDF
    Exogenous transfer RNAs (tRNAs) favor translation of bovine papillomavirus 1 wild-type (wt) L1 mRNA in in vitro translation systems (Zhou et al. 1999, J. Virol., 73, 4972-4982). We, therefore, investigated whether papillomavirus (PV) wt L1 protein expression could be enhanced in eukaryotic cells following exogenous tRNA supplementation. Both Chinese hamster ovary (CHO) and Cos1 cells, transfected with PV1 wt L1 genes, effectively transcribed the genes but did not translate them. However, L1 protein translation was demonstrated following co-transfection with the L1 gene and a gene expressing tRNA(Ser)(CGA). Cell lines, stably transfected with a bovine papillomavirus 1 (BPV1) wt L1 expression construct, produced L1 protein after the transfection of the tRNA(Ser)(CGA) gene, but not following the transfection with basal vectors, suggesting that tRNA(Ser)(CGA) gene enhanced wt L1 translation as a result of endogenous tRNA alterations and phosphorylation of translation initiation factors elF4E and elF2alpha in the tRNA(Ser)(CGA) transfected L1 cell lines. The tRNA(Ser)(CGA) gene expression significantly reduced translation of L1 proteins expressed from codon-modified (HB) PV L1 genes utilizing mammalian preferred codons, but had variable effects on translation of green fluorescent proteins (GFPs) expressed from six serine GFP variants. The changes of tRNA pools appear to match the codon composition of PV wt and HB L1 genes and serine GFP variants to regulate translation of their mRNAs. These findings demonstrate for the first time in eukaryotic cells that translation of the target genes can be differentially influenced by the provision of a single tRNA expression construct

    Integral equation method for the electromagnetic wave propagation in stratified anisotropic dielectric-magnetic materials

    Full text link
    We investigate the propagation of electromagnetic waves in stratified anisotropic dielectric-magnetic materials using the integral equation method (IEM). Based on the superposition principle, we use Hertz vector formulations of radiated fields to study the interaction of wave with matter. We derive in a new way the dispersion relation, Snell's law and reflection/transmission coefficients by self-consistent analyses. Moreover, we find two new forms of the generalized extinction theorem. Applying the IEM, we investigate the wave propagation through a slab and disclose the underlying physics which are further verified by numerical simulations. The results lead to a unified framework of the IEM for the propagation of wave incident either from a medium or vacuum in stratified dielectric-magnetic materials.Comment: 14pages, 3figure

    Twofold Structured Features-Based Siamese Network for Infrared Target Tracking

    Full text link
    Nowadays, infrared target tracking has been a critical technology in the field of computer vision and has many applications, such as motion analysis, pedestrian surveillance, intelligent detection, and so forth. Unfortunately, due to the lack of color, texture and other detailed information, tracking drift often occurs when the tracker encounters infrared targets that vary in size or shape. To address this issue, we present a twofold structured features-based Siamese network for infrared target tracking. First of all, in order to improve the discriminative capacity for infrared targets, a novel feature fusion network is proposed to fuse both shallow spatial information and deep semantic information into the extracted features in a comprehensive manner. Then, a multi-template update module based on template update mechanism is designed to effectively deal with interferences from target appearance changes which are prone to cause early tracking failures. Finally, both qualitative and quantitative experiments are carried out on VOT-TIR 2016 dataset, which demonstrates that our method achieves the balance of promising tracking performance and real-time tracking speed against other out-of-the-art trackers.Comment: 13 pages,9 figures,references adde

    Gallium-Doped Li7La3Zr2O12 Garnet-Type Electrolytes with High Lithium-Ion Conductivity

    Get PDF
    Owing to their high conductivity, crystalline Li7–3xGaxLa3Zr2O12 garnets are promising electrolytes for all-solid-state lithium-ion batteries. Herein, the influence of Ga doping on the phase, lithium-ion distribution, and conductivity of Li7–3xGaxLa3Zr2O12 garnets is investigated, with the determined concentration and mobility of lithium ions shedding light on the origin of the high conductivity of Li7–3xGaxLa3Zr2O12. When the Ga concentration exceeds 0.20 Ga per formula unit, the garnet-type material is found to assume a cubic structure, but lower Ga concentrations result in the coexistence of cubic and tetragonal phases. Most lithium within Li7–3xGaxLa3Zr2O12 is found to reside at the octahedral 96h site, away from the central octahedral 48g site, while the remaining lithium resides at the tetrahedral 24d site. Such kind of lithium distribution leads to high lithium-ion mobility, which is the origin of the high conductivity; the highest lithium-ion conductivity of 1.46 mS/cm at 25 °C is found to be achieved for Li7–3xGaxLa3Zr2O12 at x = 0.25. Additionally, there are two lithium-ion migration pathways in the Li7–3xGaxLa3Zr2O12 garnets: 96h-96h and 24d-96h-24d, but the lithium ions transporting through the 96h-96h pathway determine the overall conductivity
    • …
    corecore