38 research outputs found

    A trajectory design method for RLV via artificialmemory-principle optimization

    No full text
    A trajectory optimization method for RLV based on artificial memory principles is proposed. Firstly the optimization problem is modelled in Euclidean space. Then in order to solve the complicated optimization problem of RLV in entry phase, Artificial-memory-principle optimization (AMPO) is introduced. AMPO is inspired by memory principles, in which a memory cell consists the whole information of an alternative solution. The information includes solution state and memory state. The former is an evolutional alternative solution, the latter indicates the state type of memory cell: temporary, short-and long-term. In the evolution of optimization, AMPO makes a various search (stimulus) to ensure adaptability, if the stimulus is good, memory state will turn temporary to short-term, even long-term, otherwise it not. Finally, simulation of different methods is carried out respectively. Results show that the method based on AMPO has better performance and high convergence speed when solving complicated optimization problems of RLV

    A trajectory design method for RLV via artificialmemory-principle optimization

    No full text
    A trajectory optimization method for RLV based on artificial memory principles is proposed. Firstly the optimization problem is modelled in Euclidean space. Then in order to solve the complicated optimization problem of RLV in entry phase, Artificial-memory-principle optimization (AMPO) is introduced. AMPO is inspired by memory principles, in which a memory cell consists the whole information of an alternative solution. The information includes solution state and memory state. The former is an evolutional alternative solution, the latter indicates the state type of memory cell: temporary, short-and long-term. In the evolution of optimization, AMPO makes a various search (stimulus) to ensure adaptability, if the stimulus is good, memory state will turn temporary to short-term, even long-term, otherwise it not. Finally, simulation of different methods is carried out respectively. Results show that the method based on AMPO has better performance and high convergence speed when solving complicated optimization problems of RLV

    Onboard Trajectory Generation of Hypersonic Morphing Aircraft

    No full text
    In this paper, a trajectory optimization strategy for the hypersonic morphing aircraft is proposed, and the AMPI method is used to generate the online trajectory with initial state errors. Firstly, the aerodynamic model and propulsion model of the hypersonic morphing aircraft were established considering the wingspan and the scramjet. Secondly, the optimization strategy was proposed via Gauss pseudospectral method considering the control variables including angle of attack (AOA) and wingspan. The optimized trajectory met the final constraints and path constraints with the objective to minimize the time of the ascent phase. Then, the AMPI method was used to generate online trajectory without solving OCP or NLP on the base of trajectory database calculated by the optimization strategy. The simulation results indicate high accuracy of AMPI method and the final errors corresponding to different initial errors were acceptable. The mean value of the CPU time of the method was about 0.1 second, which shows real-time capability

    High-Order Sliding Mode-Based Fixed-Time Active Disturbance Rejection Control for Quadrotor Attitude System

    No full text
    This article presents a fixed-time active disturbance rejection control approach for the attitude control problem of quadrotor unmanned aerial vehicle in the presence of dynamic wind, mass eccentricity and an actuator fault. The control scheme applies the feedback linearization technique and enhances the performance of the traditional active disturbance rejection control (ADRC) based on the fixed-time high-order sliding mode method. A switching-type uniformly convergent differentiator is used to improve the extended state observer for estimating and attenuating the lumped disturbance more accurately. A multivariable high-order sliding mode feedback law is derived to achieve fixed time convergence. The timely convergence of the designed extended state observer and the feedback law is proved theoretically. Mathematical simulations with detailed actuator models and real time experiments are performed to demonstrate the robustness and practicability of the proposed control scheme

    Predefined-Time Nonsingular Attitude Control for Vertical-Takeoff Horizontal-Landing Reusable Launch Vehicle

    No full text
    This paper presents a novel predefined-time nonsingular tracking control system for a vertical-takeoff horizontal-landing (VTHL) reusable launch vehicle (RLV) in the face of parameter uncertainties, model couplings and external disturbances. Firstly, this paper proposes a novel predefined-time prescribed performance function (PTPPF) with desired steady-state and transient performance. The convergence time of PTPPF from the transient state to the steady state can be flexibly adjusted by changing one parameter. Moreover, the decreasing rate of PTPPF in the transient phase can also be adjusted by changing one parameter on the premise of not changing the convergence time of PPF to reach steady state. A novel predefined-time terminal sliding mode surface (SMS) is designed to avoid the singularity, and the attitude tracking errors on SMS are predefined-time stable. By utilizing PTPPF and error transformation, this paper designs a novel nonsingular sliding mode controller to guarantee the attitudes of RLV with desired tracking performance. Without using piecewise functions, the phenomenon of singularity can be avoided. The Lyapunov method is used to verify the stability of the controller. Lastly, a numerical simulation is presented to validate the efficiency of the proposed controller

    Optimization and Analysis on Trajectory with Multiple Constraints for Hypersonic Air-vehicle

    No full text
    The trajectory optimization technology is one of the key technologies for hypersonic air-vehicle. There are multiple constraints in the process of hypersonic flight, such as uncertainty of flight environment, thermal current, dynamic pressure and overload. The trajectory optimization of hypersonic air-vehicle is facing with a great challenge. This article studies the direct shooting method, the Gauss pseudo spectral method and sequential gradient-restoration algorithm, among which the direct shooting method simply makes the control variables discrete in the time domain, and obtains the status value by explicit numerical integration; Gauss pseudo spectral method makes the status variable and control variable discrete in a series of Gauss points, and constructs multinomial to approximate to the status and control variable by taking the discrete points as the nodes; sequential gradient-restoration algorithm uses iteration to meet the constraints and minimize the increment of initial value of control and status variable in order to constantly approximate to the optimal solution on condition that the constraints meet first order approximation. Finally this article conducts a numerical simulation by taking the diving segment of hypersonic air-vehicle as an example for comparative analysis on those three algorithms respectively from, such as, the initial value selection, constraint handling, convergence speed and calculation accuracy. The simulation result indicates Gauss pseudo spectral method is a method with fairly good comprehensive performance
    corecore