6 research outputs found
Recommended from our members
Solubility and selectivity effects of the anion on the adsorption of different heavy metal ions onto chitosan
The biopolymer chitosan is a very efficient adsorber material for the removal of heavy metal ions from aqueous solutions. Due to the solubility properties of chitosan it can be used as both a liquid adsorber and a solid flocculant for water treatment reaching outstanding adsorption capacities for a number of heavy metal ions. However, the type of anion corresponding to the investigated heavy metal ions has a strong influence on the adsorption capacity and sorption mechanism on chitosan. In this work, the adsorption capacity of the heavy metal ions manganese, iron, cobalt, nickel, copper, and zinc were investigated in dependence on their corresponding anions sulfate, chloride, and nitrate by batch experiments. The selectivity of the different heavy metal ions was analyzed by column experiments. © 2020 by the authors
Simultaneous Adsorption of Iron and Sulfate Ions with Biopolymers
Abstract -In this study, we investigated the simultaneous adsorption of iron and sulfate ions onto a natural biopolymer. Chitosan was used to remove anions and cations from aqueous solutions using adsorption in batch and column experiments. The adsorption process is based on two simultaneous running mechanisms, namely ionic interactions for the oxyanion sulphate and complexation for the heavy metal ion. In this context it is essential that both oppositely charged ions are present in the solution for a high performance adsorption. The adsorption capacities for iron ions on chitosan were very promising with a maximum adsorption capacity of 140 mg/g (for the batch experiments). The maximum adsorption capacity obtained for sulfate ions was 210 mg/g. The column adsorption data pointed out that the rate of separation is 100 % for iron ions and 83 % for sulfate ions, respectively
Detection of miRNA using a surface plasmon resonance biosensor and antibody amplification
MiRNAs are non-coding RNA molecules that control biological functions by reducing the translation of target proteins when binding to the mRNA. Alterations of the miRNA expression profile affect the cell metabolism, which can lead to distinctive disease patterns thus suggesting miRNA as an interesting biomarker. Here we present a SPR biosensor that utilizes disposable, injection-molded sensor chip/microfluidic hybrids combined with a lateral imaging optical system for parallel analysis of three one-dimensional spot arrays to detect miRNA-93. Using a RNA-DNA-hybrid antibody for signal enhancement we could reach a limit of detection of 10 pmol/l
Ultrasensitive SPR detection of miRNA-93 using antibody-enhanced and enzymatic signal amplification
MiRNAs are endogenous non-coding RNA molecules. They play important gene-regulatory roles by binding to the mRNA of target genes thereby leading to either transcript degradation or translational repression. In virtually all diseases, distinct alterations of miRNA expression profiles have been found thus suggesting miRNAs as interesting biomarkers. Here, we present a SPR biosensor that utilizes disposable, injection-molded sensor chip/microfluidic hybrids combined with a lateral imaging optical system for parallel analysis of three one-dimensional spot arrays to detect miRNA-93. To increase the sensitivity of the biosensor we used two different amplification strategies. By adding an RNA-DNA-hybrid antibody for primary signal amplification, a limit of detection of 10 pmol/l was achieved. Based on that method we demonstrate the detection of miRNA-93 in total RNA lysate from HEK-293 cells. Utilizing an enzymatic signal amplification with Poly(A) polymerase, the sensitivity could be increased even further leading to a limit of detection of 1 fmol/l
Hollow Au@TiO2 porous electrospun nanofibers for catalytic applications
Catalytically active porous and hollow titania nanofibers encapsulating gold nanoparticles were fabricated using a combination of sol-gel chemistry and coaxial electrospinning technique. We report the fabrication of catalytically active porous and hollow titania nanofibers encapsulating gold nanoparticles (AuNPs) using a combination of sol-gel chemistry and coaxial electrospinning technique. The coaxial electrospinning involved the use of a mixture of poly(vinyl pyrrolidone) (PVP) and titania sol as the shell forming component, whereas a mixture of poly(4-vinyl pyridine) (P4VP) and pre-synthesized AuNPs constituted the core forming component. The core-shell nanofibers were calcined stepwise up to 600 °C which resulted in decomposition and removal of the organic constituents of the nanofibers. This led to the formation of porous and hollow titania nanofibers, where the catalytic AuNPs were embedded in the inner wall of the titania shell. The catalytic activity of the prepared Au@TiO2 porous nanofibers was investigated using a model reaction of catalytic reduction of 4-nitrophenol and Congo red dye in the presence of NaBH4. The Au@TiO2 porous and hollow nanofibers exhibited excellent catalytic activity and recyclability, and the morphology of the nanofibers remained intact after repeated usage. The presented approach could be a promising route for immobilizing various nanosized catalysts in hollow titania supports for the design of stable catalytic systems where the added photocatalytic activity of titania could further be of significance. This journal is © The Royal Society of Chemistry