7,494 research outputs found

    Universal Private Estimators

    Full text link
    We present \textit{universal} estimators for the statistical mean, variance, and scale (in particular, the interquartile range) under pure differential privacy. These estimators are universal in the sense that they work on an arbitrary, unknown continuous distribution P\mathcal{P} over R\mathbb{R}, while yielding strong utility guarantees except for ill-behaved P\mathcal{P}. For certain distribution families like Gaussians or heavy-tailed distributions, we show that our universal estimators match or improve existing estimators, which are often specifically designed for the given family and under \textit{a priori} boundedness assumptions on the mean and variance of P\mathcal{P}. This is the first time these boundedness assumptions are removed under pure differential privacy. The main technical tools in our development are instance-optimal empirical estimators for the mean and quantiles over the unbounded integer domain, which can be of independent interest

    Robust Sliding Mode Control Based on GA Optimization and CMAC Compensation for Lower Limb Exoskeleton

    Get PDF
    A lower limb assistive exoskeleton is designed to help operators walk or carry payloads. The exoskeleton is required to shadow human motion intent accurately and compliantly to prevent incoordination. If the user’s intention is estimated accurately, a precise position control strategy will improve collaboration between the user and the exoskeleton. In this paper, a hybrid position control scheme, combining sliding mode control (SMC) with a cerebellar model articulation controller (CMAC) neural network, is proposed to control the exoskeleton to react appropriately to human motion intent. A genetic algorithm (GA) is utilized to determine the optimal sliding surface and the sliding control law to improve performance of SMC. The proposed control strategy (SMC_GA_CMAC) is compared with three other types of approaches, that is, conventional SMC without optimization, optimal SMC with GA (SMC_GA), and SMC with CMAC compensation (SMC_CMAC), all of which are employed to track the desired joint angular position which is deduced from Clinical Gait Analysis (CGA) data. Position tracking performance is investigated with cosimulation using ADAMS and MATLAB/SIMULINK in two cases, of which the first case is without disturbances while the second case is with a bounded disturbance. The cosimulation results show the effectiveness of the proposed control strategy which can be employed in similar exoskeleton systems

    Central engine afterglow of Gamma-ray Bursts

    Full text link
    Before 2004, nearly all GRB afterglow data could be understood in the context of the external shocks model. This situation has changed in the past two years, when it became clear that some afterglow components should be attributed to the activity of the central engine; i.e., the {\it central engine afterglow}. We review here the afterglow emission that is directly related to the GRB central engine. Such an interpretation proposed by Katz, Piran & Sari, peculiar in pre-{\it Swift} era, has become generally accepted now.Comment: 4 pages including 1 figure. Presented at the conference "Astrophysics of Compact Objects" (July 1-7, 2007; Huangshan, China

    Comparative proteomic profiling reveals molecular characteristics associated with oogenesis and oocyte maturation during ovarian development of Bactrocera dorsalis (Hendel)

    Get PDF
    Time-dependent expression of proteins in ovary is important to understand oogenesis in insects. Here, we profiled the proteomes of developing ovaries from Bactrocera dorsalis (Hendel) to obtain information about ovarian development with particular emphasis on differentially expressed proteins (DEPs) involved in oogenesis. A total of 4838 proteins were identified with an average peptide number of 8.15 and sequence coverage of 20.79%. Quantitative proteomic analysis showed that a total of 612 and 196 proteins were differentially expressed in developing and mature ovaries, respectively. Furthermore, 153, 196 and 59 potential target proteins were highly expressed in early, vitellogenic and mature ovaries and most tested DEPs had the similar trends consistent with the respective transcriptional profiles. These proteins were abundantly expressed in pre-vitellogenic and vitellogenic stages, including tropomyosin, vitellogenin, eukaryotic translation initiation factor, heat shock protein, importin protein, vitelline membrane protein, and chorion protein. Several hormone and signal pathway related proteins were also identified during ovarian development including piRNA, notch, insulin, juvenile, and ecdysone hormone signal pathways. This is the first report of a global ovary proteome of a tephritid fruit fly, and may contribute to understanding the complicate processes of ovarian development and exploring the potentially novel pest control targets

    Is the late near-infrared bump in short-hard GRB 130603B due to the Li-Paczynski kilonova?

    Full text link
    Short-hard gamma-ray bursts (GRBs) are widely believed to be produced by the merger of two binary compact objects, specifically by two neutron stars or by a neutron star orbiting a black hole. According to the Li-Paczynski kilonova model, the merger would launch sub-relativistic ejecta and a near-infrared/optical transient would then occur, lasting up to days, which is powered by the radioactive decay of heavy elements synthesized in the ejecta. The detection of a late bump using the {\em Hubble Space Telescope} ({\em HST}) in the near-infrared afterglow light curve of the short-hard GRB 130603B is indeed consistent with such a model. However, as shown in this Letter, the limited {\em HST} near-infrared lightcurve behavior can also be interpreted as the synchrotron radiation of the external shock driven by a wide mildly relativistic outflow. In such a scenario, the radio emission is expected to peak with a flux of ∼100μ\sim 100 \muJy, which is detectable for current radio arrays. Hence, the radio afterglow data can provide complementary evidence on the nature of the bump in GRB 130603B. It is worth noting that good spectroscopy during the bump phase in short-hard bursts can test validity of either model above, analogous to spectroscopy of broad-lined Type Ic supernova in long-soft GRBs.Comment: 4 pages, 2 figures, published in ApJ Lette

    A supra-massive magnetar central engine for short GRB 130603B

    Full text link
    We show that the peculiar early optical and in particular X-ray afterglow emission of the short duration burst GRB 130603B can be explained by continuous energy injection into the blastwave from a supra-massive magnetar central engine. The observed energetics and temporal/spectral properties of the late infrared bump (i.e., the "kilonova") are also found consistent with emission from the ejecta launched during an NS-NS merger and powered by a magnetar central engine. The isotropic-equivalent kinetic energies of both the GRB blastwave and the kilonova are about Ek∼1051E_{\rm k}\sim 10^{51} erg, consistent with being powered by a near-isotropic magnetar wind. However, this relatively small value demands that most of the initial rotational energy of the magnetar (∼a few×1052 erg)(\sim {\rm a~ few \times 10^{52}~ erg}) is carried away by gravitational wave radiation. Our results suggest that (i) the progenitor of GRB 130603B would be a NS-NS binary system, whose merger product would be a supra-massive neutron star that lasted for about ∼1000\sim 1000 seconds; (ii) the equation-of-state of nuclear matter would be stiff enough to allow survival of a long-lived supra-massive neutron star, so that it is promising to detect bright electromagnetic counterparts of gravitational wave triggers without short GRB associations in the upcoming Advanced LIGO/Virgo era.Comment: Five pages including 1 Figure, to appear in ApJ
    • …
    corecore