388 research outputs found

    SeeCucumbers: using deep learning and drone iagery to detect sea cucumbers on coral reef flats

    Get PDF
    Sea cucumbers (Holothuroidea or holothurians) are a valuable fishery and are also crucial nutrient recyclers, bioturbation agents, and hosts for many biotic associates. Their ecological impacts could be substantial given their high abundance in some reef locations and thus monitoring their populations and spatial distribution is of research interest. Traditional in situ surveys are laborious and only cover small areas but drones offer an opportunity to scale observations more broadly, especially if the holothurians can be automatically detected in drone imagery using deep learning algorithms. We adapted the object detection algorithm YOLOv3 to detect holothurians from drone imagery at Hideaway Bay, Queensland, Australia. We successfully detected 11,462 of 12,956 individuals over 2.7ha with an average density of 0.5 individual/m2. We tested a range of hyperparameters to determine the optimal detector performance and achieved 0.855 mAP, 0.82 precision, 0.83 recall, and 0.82 F1 score. We found as few as ten labelled drone images was sufficient to train an acceptable detection model (0.799 mAP). Our results illustrate the potential of using small, affordable drones with direct implementation of open-source object detection models to survey holothurians and other shallow water sessile species

    Plasmid encoding matrix protein of vesicular stomatitis viruses as an antitumor agent inhibiting rat glioma growth in situ

    No full text
    Aim: Oncolytic effect of vesicular stomatitis virus (VSV) has been proved previously. Aim of the study is to investigate glioma inhibition effect of Matrix (M) protein of VSV in situ. Materials and Methods: A recombinant plasmid encoding VSV M protein (PM) was genetically engineered, and then transfected into cultured C6 gliomas cells in vitro. C6 transfected with Liposome-encapsulated PM (LEPM) was implanted intracranially for tumorigenicity study. In treatment experiment, rats were sequentially established intracranial gliomas with wild-typed C6 cells, and accepted LEPM injection intravenously. Possible mechanism of M protein was studied by using Hoechst staining, PI-stained flow cytometric analysis, TUNEL staining and CD31 staining. Results: M protein can induce generous gliomas lysis in vitro. None of the rats implanted with LEPM-treated cells developed any significant tumors, whereas all rats in control group developed tumors. In treatment experiment, smaller tumor volume and prolonged survival time was found in the LEPM-treated group. Histological studies revealed that possible mechanism were apoptosis and anti-angiogenesis. Conclusion: VSV-M protein can inhibit gliomas growth in vitro and in situ, which indicates such a potential novel biotherapeutic strategy for glioma treatment.ЦСль: ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ матриксного ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½Π° (М ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½Π°) вируса вСзикулярного стоматита (Π’Π’Π‘) ΡƒΠ³Π½Π΅Ρ‚Π°Ρ‚ΡŒ рост Π³Π»ΠΈΠΎΠΌΡ‹ in situ. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹: сконструирована рСкомбинантная ΠΏΠ»Π°Π·ΠΌΠΈΠ΄Π°, ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰Π°Ρ М ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ Π’Π’Π‘, которая Π·Π°Ρ‚Π΅ΠΌ Π±Ρ‹Π»Π° трансфСцирована Π² ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ Π³Π»ΠΈΠΎΠΌΡ‹ Π‘6 in. ΠšΠ»Π΅Ρ‚ΠΊΠΈ Π³Π»ΠΈΠΎΠΌΡ‹ Π‘6, трансфСцированныС инкапсулированным Π² липосомы М ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ΠΎΠΌ (Π›Π˜ΠœΠŸ), ΠΈΠΌΠΏΠ»Π°Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ ΠΈΠ½Ρ‚Ρ€Π°ΠΊΡ€Π°Π½ΠΈΠ°Π»ΡŒΠ½ΠΎ для изучСния туморогСнности. Π’ экспСримСнтС крысам с трансплантированной ΠΈΠ½Ρ‚Ρ€Π°ΠΊΡ€Π°Π½ΠΈΠ°Π»ΡŒΠ½ΠΎ Π³Π»ΠΈΠΎΠΌΠΎΠΉ Π‘6 (исходный ΡˆΡ‚Π°ΠΌΠΌ) Π²Π½ΡƒΡ‚Ρ€ΠΈΠ²Π΅Π½Π½ΠΎ Π²Π²ΠΎΠ΄ΠΈΠ»ΠΈ Π›Π˜ΠœΠŸ. АпоптотичСскоС дСйствиС М ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½Π° Π½Π° ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΈΠ·ΡƒΡ‡Π°Π»ΠΈ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ флуорСсцСнцСнтной микроскопии (ΠΎΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎ Π₯Схсту), ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ†ΠΈΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ (ΠΎΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΏΠΈΠ΄ΠΈΡƒΠΌΠΎΠΌ ΠΉΠΎΠ΄ΠΈΠ΄ΠΎΠΌ), TUNEL Π²Π°ΡΠΊΡƒΠ»ΡΡ€ΠΈΠ·Π°Ρ†ΠΈΡŽ ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ гистологичСски ΠΈ Π²Π°ΡΠΊΡƒΠ»ΡΡ€ΠΈΠ·Π°Ρ†ΠΈΡŽ ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ гистологичСски ΠΈ иммуногистохимичСски с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π°Π½Ρ‚ΠΈ-CD31 ΠΌΠΎΠ½ΠΎΠΊΠ»ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π°Π½Ρ‚ΠΈΡ‚Π΅Π». 31 ΠΌΠΎΠ½ΠΎΠΊΠ»ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π°Π½Ρ‚ΠΈΡ‚Π΅Π». 31 ΠΌΠΎΠ½ΠΎΠΊΠ»ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… Π°Π½Ρ‚ΠΈΡ‚Π΅Π». Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹: М ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ лизис ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π³Π»ΠΈΠΎΠΌΡ‹ in. Ни Ρƒ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΆΠΈΠ²ΠΎΡ‚Π½ΠΎΠ³ΠΎ с трансплантированными ΠΊΠ»Π΅Ρ‚ΠΊΠ°ΠΌΠΈ Π³Π»ΠΈΠΎΠΌΡ‹, ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΌΠΈ Π›Π˜ΠœΠŸ, Π½Π΅ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π»ΠΈ ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π°Π·ΠΌΠ΅Ρ€Π°, Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ Ρƒ всСх крыс ΠΈΠ· ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΡ‹ ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ Ρ€Π°Π·Π²ΠΈΠ²Π°Π»ΠΈΡΡŒ. Π’ Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ Π²Π²ΠΎΠ΄ΠΈΠ»ΠΈ Π›Π˜ΠœΠŸ, ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ Π±Ρ‹Π»ΠΈ мСньшСго объСма ΠΈ ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΆΠΈΠ·Π½ΠΈ ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…. Показано, Ρ‡Ρ‚ΠΎ М ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ проявляСт Π°Π½Ρ‚ΠΈΠ°Π½Π³ΠΈΠΎΠ³Π΅Π½Π½Ρ‹Π΅ свойства ΠΈ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·. Π’Ρ‹Π²ΠΎΠ΄Ρ‹: М ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ Π’Π’Π‘ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΡƒΠ΅Ρ‚ рост Π³Π»ΠΈΠΎΠΌΡ‹ in ΠΈ in. На этой основС ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎ новая биотСрапСвтичСская стратСгия для лСчСния ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с Π³Π»ΠΈΠΎΠΌΠ°ΠΌΠΈ

    Production of the PP-Wave Excited BcB_c-States through the Z0Z^0 Boson Decays

    Full text link
    In Ref.[7],we have dealt with the production of the two color-singlet SS-wave (cbΛ‰)(c\bar{b})-quarkonium states Bc(∣(cbΛ‰)1[1S0]>)B_c(|(c\bar{b})_{\bf 1}[^1S_0]>) and Bcβˆ—(∣(cbΛ‰)1[3S1]>)B^*_c(|(c\bar{b})_{\bf 1}[^3S_1]>) through the Z0Z^0 boson decays. As an important sequential work, we make a further discussion on the production of the more complicated PP-wave excited (cbΛ‰)(c\bar{b})-quarkonium states, i.e. ∣(cbΛ‰)1[1P1]>|(c\bar{b})_{\bf 1}[^1P_1]> and ∣(cbΛ‰)1[3PJ]>|(c\bar{b})_{\bf 1}[^3P_J]> (with J=(1,2,3)J=(1,2,3)). More over, we also calculate the channel with the two color-octet quarkonium states ∣(cbΛ‰)8[1S0]g>|(c\bar{b})_{\bf 8}[^1S_0]g> and ∣(cbΛ‰)8[3S1]g>|(c\bar{b})_{\bf 8}[^3S_1]g>, whose contributions to the decay width maybe at the same order of magnitude as that of the color-singlet PP-wave states according to the naive nonrelativistic quantum chromodynamics scaling rules. The PP-wave states shall provide sizable contributions to the BcB_c production, whose decay width is about 20% of the total decay width Ξ“Z0β†’Bc\Gamma_{Z^0\to B_c}. After summing up all the mentioned (cbΛ‰)(c\bar{b})-quarkonium states' contributions, we obtain Ξ“Z0β†’Bc=235.9βˆ’122.0+352.8\Gamma_{Z^0\to B_c} =235.9^{+352.8}_{-122.0} KeV, where the errors are caused by the main uncertainty sources.Comment: 8 pages, 5 figures and 2 tables. basic formulae in the appendix are cut off to match the published version, which can be found in v1. to be published in Eur.Phys.J.

    Revisiting the Bs(βˆ—)B^{(*)}_s-Meson Production at the Hadronic Colliders

    Full text link
    The production of heavy-flavored hadron at the hadronic colliders provides a challenging opportunity to test the validity of pQCD predictions. There are two mechanisms for the Bs(βˆ—)B^{(*)}_s hadroproduction, i.e. the gluon-gluon fusion mechanism via the subprocess g+gβ†’Bs(βˆ—)+b+sΛ‰g+g\rightarrow B^{(*)}_s+b+\bar{s} and the extrinsic heavy quark mechanism via the subprocesses g+bΛ‰β†’Bs(βˆ—)+sΛ‰g+\bar{b}\to B^{(*)}_s +\bar{s} and g+sβ†’Bs(βˆ—)+bg+s\to B^{(*)}_s +b, both of which shall have sizable contributions in proper kinematic region. Different from the fixed-flavor-number scheme (FFNS) previously adopted in the literature, we study the Bs(βˆ—)B^{(*)}_s hadroproduction under the general-mass variable-flavor-number scheme (GM-VFNS), in which we can consistently deal with the double counting problem from the above two mechanisms. Properties for the Bs(βˆ—)B^{(*)}_s hadroproduction are discussed. To be useful reference, a comparative study of FFNS and GM-VFNS is presented. Both of which can provide reasonable estimations for the Bs(βˆ—)B^{(*)}_s hadroproduction. At the Tevatron, the difference between these two schemes is small, however such difference is obvious at the LHC. The forthcoming more precise data on LHC shall provide a good chance to check which scheme is more appropriate to deal with the Bs(βˆ—)B^{(*)}_s-meson production and to further study the heavy quark components in hadrons.Comment: 18 pages, 8 figures, 4 tables. To match the published version. To be published in Eur.Phys.J.

    Search for the Rare Decays J/Psi --> Ds- e+ nu_e, J/Psi --> D- e+ nu_e, and J/Psi --> D0bar e+ e-

    Full text link
    We report on a search for the decays J/Psi --> Ds- e+ nu_e + c.c., J/Psi --> D- e+ nu_e + c.c., and J/Psi --> D0bar e+ e- + c.c. in a sample of 5.8 * 10^7 J/Psi events collected with the BESII detector at the BEPC. No excess of signal above background is observed, and 90% confidence level upper limits on the branching fractions are set: B(J/Psi --> Ds- e+ nu_e + c.c.)<4.8*10^-5, B(J/Psi --> D- e+ nu_e + c.c.) D0bar e+ e- + c.c.)<1.1*10^-5Comment: 10 pages, 4 figure

    Direct Measurements of the Branching Fractions for D0β†’Kβˆ’e+Ξ½eD^0 \to K^-e^+\nu_e and D0β†’Ο€βˆ’e+Ξ½eD^0 \to \pi^-e^+\nu_e and Determinations of the Form Factors f+K(0)f_{+}^{K}(0) and f+Ο€(0)f^{\pi}_{+}(0)

    Get PDF
    The absolute branching fractions for the decays D0β†’Kβˆ’e+Ξ½eD^0 \to K^-e ^+\nu_e and D0β†’Ο€βˆ’e+Ξ½eD^0 \to \pi^-e^+\nu_e are determined using 7584Β±198Β±3417584\pm 198 \pm 341 singly tagged DΛ‰0\bar D^0 sample from the data collected around 3.773 GeV with the BES-II detector at the BEPC. In the system recoiling against the singly tagged DΛ‰0\bar D^0 meson, 104.0Β±10.9104.0\pm 10.9 events for D0β†’Kβˆ’e+Ξ½eD^0 \to K^-e ^+\nu_e and 9.0Β±3.69.0 \pm 3.6 events for D0β†’Ο€βˆ’e+Ξ½eD^0 \to \pi^-e^+\nu_e decays are observed. Those yield the absolute branching fractions to be BF(D0β†’Kβˆ’e+Ξ½e)=(3.82Β±0.40Β±0.27)BF(D^0 \to K^-e^+\nu_e)=(3.82 \pm 0.40\pm 0.27)% and BF(D0β†’Ο€βˆ’e+Ξ½e)=(0.33Β±0.13Β±0.03)BF(D^0 \to \pi^-e^+\nu_e)=(0.33 \pm 0.13\pm 0.03)%. The vector form factors are determined to be ∣f+K(0)∣=0.78Β±0.04Β±0.03|f^K_+(0)| = 0.78 \pm 0.04 \pm 0.03 and ∣f+Ο€(0)∣=0.73Β±0.14Β±0.06|f^{\pi}_+(0)| = 0.73 \pm 0.14 \pm 0.06. The ratio of the two form factors is measured to be ∣f+Ο€(0)/f+K(0)∣=0.93Β±0.19Β±0.07|f^{\pi}_+(0)/f^K_+(0)|= 0.93 \pm 0.19 \pm 0.07.Comment: 6 pages, 5 figure

    Study of J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar

    Full text link
    The branching ratios and Angular distributions for J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar are measured using BESII 58 million J/psi.Comment: 11 pages, 5 figure

    Measurements of J/psi Decays into 2(pi+pi-)eta and 3(pi+pi-)eta

    Full text link
    Based on a sample of 5.8X 10^7 J/psi events taken with the BESII detector, the branching fractions of J/psi--> 2(pi+pi-)eta and J/psi-->3(pi+pi-)eta are measured for the first time to be (2.26+-0.08+-0.27)X10^{-3} and (7.24+-0.96+-1.11)X10^{-4}, respectively.Comment: 11 pages, 6 figure

    BESII Detector Simulation

    Full text link
    A Monte Carlo program based on Geant3 has been developed for BESII detector simulation. The organization of the program is outlined, and the digitization procedure for simulating the response of various sub-detectors is described. Comparisons with data show that the performance of the program is generally satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM
    • …
    corecore