138 research outputs found

    A Rectangular Planar Spiral Antenna for GIS Partial Discharge Detection

    Get PDF
    A rectangular planar spiral antenna sensor was designed for detecting the partial discharge in gas insulation substations (GIS). It can expediently receive electromagnetic waves leaked from basin-type insulators and can effectively suppress low frequency electromagnetic interference from the surrounding environment. Certain effective techniques such as rectangular spiral structure, bow-tie loading, and back cavity structure optimization during the antenna design process can miniaturize antenna size and optimize voltage standing wave ratio (VSWR) characteristics. Model calculation and experimental data measured in the laboratory show that the antenna possesses a good radiating performance and a multiband property when working in the ultrahigh frequency (UHF) band. A comparative study between characteristics of the designed antenna and the existing quasi-TEM horn antenna was made. Based on the GIS defect simulation equipment in the laboratory, partial discharge signals were detected by the designed antenna, the available quasi-TEM horn antenna, and the microstrip patch antenna, and the measurement results were compared

    CopyScope: Model-level Copyright Infringement Quantification in the Diffusion Workflow

    Full text link
    Web-based AI image generation has become an innovative art form that can generate novel artworks with the rapid development of the diffusion model. However, this new technique brings potential copyright infringement risks as it may incorporate the existing artworks without the owners' consent. Copyright infringement quantification is the primary and challenging step towards AI-generated image copyright traceability. Previous work only focused on data attribution from the training data perspective, which is unsuitable for tracing and quantifying copyright infringement in practice because of the following reasons: (1) the training datasets are not always available in public; (2) the model provider is the responsible party, not the image. Motivated by this, in this paper, we propose CopyScope, a new framework to quantify the infringement of AI-generated images from the model level. We first rigorously identify pivotal components within the AI image generation pipeline. Then, we propose to take advantage of Fr\'echet Inception Distance (FID) to effectively capture the image similarity that fits human perception naturally. We further propose the FID-based Shapley algorithm to evaluate the infringement contribution among models. Extensive experiments demonstrate that our work not only reveals the intricacies of infringement quantification but also effectively depicts the infringing models quantitatively, thus promoting accountability in AI image-generation tasks

    WM-NET: Robust Deep 3D Watermarking with Limited Data

    Full text link
    The goal of 3D mesh watermarking is to embed the message in 3D meshes that can withstand various attacks imperceptibly and reconstruct the message accurately from watermarked meshes. Traditional methods are less robust against attacks. Recent DNN-based methods either introduce excessive distortions or fail to embed the watermark without the help of texture information. However, embedding the watermark in textures is insecure because replacing the texture image can completely remove the watermark. In this paper, we propose a robust deep 3D mesh watermarking WM-NET, which leverages attention-based convolutions in watermarking tasks to embed binary messages in vertex distributions without texture assistance. Furthermore, our WM-NET exploits the property that simplified meshes inherit similar relations from the original ones, where the relation is the offset vector directed from one vertex to its neighbor. By doing so, our method can be trained on simplified meshes(limited data) but remains effective on large-sized meshes (size adaptable) and unseen categories of meshes (geometry adaptable). Extensive experiments demonstrate our method brings 50% fewer distortions and 10% higher bit accuracy compared to previous work. Our watermark WM-NET is robust against various mesh attacks, e.g. Gauss, rotation, translation, scaling, and cropping

    LSTM Learning with Bayesian and Gaussian Processing for Anomaly Detection in Industrial IoT

    Get PDF
    The data generated by millions of sensors in Industrial Internet of Things (IIoT) is extremely dynamic, heterogeneous, and large scale. It poses great challenges on the real-time analysis and decision making for anomaly detection in IIoT. In this paper, we propose a LSTM-Gauss-NBayes method, which is a synergy of the long short-term memory neural network (LSTM-NN) and the Gaussian Bayes model for outlier detection in IIoT. In a nutshell, the LSTM-NN builds model on normal time series. It detects outliers by utilising the predictive error for the Gaussian Naive Bayes model. Our method exploits advantages of both LSTM and Gaussian Naive Bayes models, which not only has strong prediction capability of LSTM for future time point data, but also achieves an excellent classification performance of Gaussian Naive Bayes model through the predictive error. Empirical studies demonstrate our solution outperforms the best-known competitors, which is a preferable choice for detecting anomalies

    DoseDiff: Distance-aware Diffusion Model for Dose Prediction in Radiotherapy

    Full text link
    Treatment planning is a critical component of the radiotherapy workflow, typically carried out by a medical physicist using a time-consuming trial-and-error manner. Previous studies have proposed knowledge-based or deep learning-based methods for predicting dose distribution maps to assist medical physicists in improving the efficiency of treatment planning. However, these dose prediction methods usuallylack the effective utilization of distance information between surrounding tissues andtargets or organs-at-risk (OARs). Moreover, they are poor in maintaining the distribution characteristics of ray paths in the predicted dose distribution maps, resulting in a loss of valuable information obtained by medical physicists. In this paper, we propose a distance-aware diffusion model (DoseDiff) for precise prediction of dose distribution. We define dose prediction as a sequence of denoising steps, wherein the predicted dose distribution map is generated with the conditions of the CT image and signed distance maps (SDMs). The SDMs are obtained by a distance transformation from the masks of targets or OARs, which provide the distance information from each pixel in the image to the outline of the targets or OARs. Besides, we propose a multiencoder and multi-scale fusion network (MMFNet) that incorporates a multi-scale fusion and a transformer-based fusion module to enhance information fusion between the CT image and SDMs at the feature level. Our model was evaluated on two datasets collected from patients with breast cancer and nasopharyngeal cancer, respectively. The results demonstrate that our DoseDiff outperforms the state-of-the-art dose prediction methods in terms of both quantitative and visual quality

    EFFL: Egalitarian Fairness in Federated Learning for Mitigating Matthew Effect

    Full text link
    Recent advances in federated learning (FL) enable collaborative training of machine learning (ML) models from large-scale and widely dispersed clients while protecting their privacy. However, when different clients' datasets are heterogeneous, traditional FL mechanisms produce a global model that does not adequately represent the poorer clients with limited data resources, resulting in lower accuracy and higher bias on their local data. According to the Matthew effect, which describes how the advantaged gain more advantage and the disadvantaged lose more over time, deploying such a global model in client applications may worsen the resource disparity among the clients and harm the principles of social welfare and fairness. To mitigate the Matthew effect, we propose Egalitarian Fairness Federated Learning (EFFL), where egalitarian fairness refers to the global model learned from FL has: (1) equal accuracy among clients; (2) equal decision bias among clients. Besides achieving egalitarian fairness among the clients, EFFL also aims for performance optimality, minimizing the empirical risk loss and the bias for each client; both are essential for any ML model training, whether centralized or decentralized. We formulate EFFL as a constrained multi-constrained multi-objectives optimization (MCMOO) problem, with the decision bias and egalitarian fairness as constraints and the minimization of the empirical risk losses on all clients as multiple objectives to be optimized. We propose a gradient-based three-stage algorithm to obtain the Pareto optimal solutions within the constraint space. Extensive experiments demonstrate that EFFL outperforms other state-of-the-art FL algorithms in achieving a high-performance global model with enhanced egalitarian fairness among all clients

    Optimized sample preparation for two-dimensional gel electrophoresis of soluble proteins from chicken bursa of Fabricius

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two-dimensional gel electrophoresis (2-DE) is a powerful method to study protein expression and function in living organisms and diseases. This technique, however, has not been applied to avian bursa of Fabricius (BF), a central immune organ. Here, optimized 2-DE sample preparation methodologies were constructed for the chicken BF tissue. Using the optimized protocol, we performed further 2-DE analysis on a soluble protein extract from the BF of chickens infected with virulent avibirnavirus. To demonstrate the quality of the extracted proteins, several differentially expressed protein spots selected were cut from 2-DE gels and identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS).</p> <p>Results</p> <p>An extraction buffer containing 7 M urea, 2 M thiourea, 2% (w/v) 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS), 50 mM dithiothreitol (DTT), 0.2% Bio-Lyte 3/10, 1 mM phenylmethylsulfonyl fluoride (PMSF), 20 U/ml Deoxyribonuclease I (DNase I), and 0.25 mg/ml Ribonuclease A (RNase A), combined with sonication and vortex, yielded the best 2-DE data. Relative to non-frozen immobilized pH gradient (IPG) strips, frozen IPG strips did not result in significant changes in the 2-DE patterns after isoelectric focusing (IEF). When the optimized protocol was used to analyze the spleen and thymus, as well as avibirnavirus-infected bursa, high quality 2-DE protein expression profiles were obtained. 2-DE maps of BF of chickens infected with virulent avibirnavirus were visibly different and many differentially expressed proteins were found.</p> <p>Conclusion</p> <p>These results showed that method C, in concert extraction buffer IV, was the most favorable for preparing samples for IEF and subsequent protein separation and yielded the best quality 2-DE patterns. The optimized protocol is a useful sample preparation method for comparative proteomics analysis of chicken BF tissues.</p
    • …
    corecore